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Abstract— In this paper we propose a semi-supervised neural
network algorithm to identify unusual load patterns in hourly
electricity demand time series. In spite of several modeling and
forecasting methodologies that have been proposed, there have
been limited advancements in monitoring and automatically
identifying outlying patterns in such series. This becomes more
important considering the difficulty and the cost associated with
manual exploration of such data, due to the vast number of
observations. The proposed network learns from both labeled
and unlabeled patterns, adapting automatically as more data
become available. This drastically limits the cost and effort
associated with exploring and labeling such data. We compare
the proposed method with conventional supervised and unsuper-
vised approaches, demonstrating higher accuracy, robustness
and efficacy on empirical electricity load data.

I. I NTRODUCTION

A CCURATE predictions of electricity load data are
required for a large variety of applications, such as

trading electricity and scheduling production. In the forecast-
ing literature such data are considered high frequency time
series, where predictions are required at hourly or shorter
intervals. Although a strict definition of what constitutesa
high frequency time series does not exist, typically we refer
to data that their sampling rate is daily or less and therefore
result in vast amounts of data [1], introducing new issues in
data handling, analysis and modeling. Use of conventional
statistical modeling approaches, designed for low frequency
time series becomes problematic in these cases [2]. In the
field of electricity load forecasting several modeling method-
ologies for such time series have been proposed [3], [4], [5],
[6]; however, there have been limited advancements in data
monitoring and automatic outlier identification. Outliersin
electricity load can be caused by several reasons, such as
major events like natural disasters or bank holidays or more
subtle like disruptions in industrial production, strikes, etc
which are harder to be aware of and model their effect on
electricity load, making outlier identification and important
problem for this domain.

This omission is crucial for a number of reasons. Time
series models often require data cleaning, which involves
modifying or removing outliers and obvious errors in the
database [7], therefore implicitly assuming that this infor-
mation is available, which in fact requires costly manual
collection. On the other hand, not cleaning the data can
have substantial effects on model specification and param-
eters [8]. Furthermore, outliers can introduce problems in
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forecasting evaluation, where large errors are introduceddue
to atypical observations, often masking the real performance
differences between the models considered [7], [9]. Tayloret
al. acknowledges this issue and removes such days altogether,
by replacing them, in order to simplify the application and
evaluation of the examined forecasting methods [6]

It is important to distinguish between point outliers, where
one or consecutive points in a time series, present abnormal
behavior, depending if these are additive or innovative out-
liers [8], [10] and functional outliers [11]. In the latter case
we are interested in analyzing data providing information
about curves, surfaces, etc as a whole varying over time.
In the context of electricity load these could be complete
days. In this paper we focus on the problem of efficiently
identifying outlying daily patterns, which can be considered
functional outliers, though in this analysis we do not as-
sume that this data are produced from smooth continuous
functions, as is the norm in functional data analysis [11],
[12]. Figure 1 provides an example of the outliers we are
considering. In this example an hourly time series is split
into daily profiles and we highlight outliers against normal
days. We can observe that outlying days can differ both in
the level, making them easy to spot like normal outliers, but
also in the shape, which are harder to spot and limits the
usefulness of functional boxplots that can be otherwise used
to visualize temporal curves and outliers [13]. The difficulty
of the later case is increased if the difference in shape does
not span the whole day.

Related approaches have employed residual analysis [8],
time series clustering and classifications methodologies [14]
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Fig. 1. An example of outlying daily profiles.



belonging to a broader group of outlier detection research
using both unsupervised and supervised learning algorithms,
such as k-means, self-organizing maps, MLP and RBF net-
works, etc [15], [16]. The limitations of these approaches is
that they either require extensive knowledge of the data, or
they do not consider prior information that may be available.
In the first case classification algorithms are employed to
distinguish between normal and outlying days, which must
be first trained on a large number of labeled cases in order to
be used to classify future data. Their weakness is the cost and
complexity associated with manually labeling high frequency
data. On the other hand, unsupervised methods do not require
prior knowledge; however, this can also limit their accuracy
in identifying correctly the outlying seasonal profiles. Inthis
paper we proposed a semi-supervised neural network method
that balances the ability to infer knowledge from the data and
make use of prior information, such as known labeled cases.

The contribution of this paper is to propose a novel semi-
supervised automatic outlier identification method, based
on self-training a neural network classifier, for detecting
unusual load patterns in hourly electricity load time series.
The innovation lies in the combination of the strengths of
self-training and neural network models to robustly and
accurately automatically identify outliers in electricity data.
The key advantages of the proposed algorithm is that it does
not require a large number of labeled samples that may be
challenging and costly to collect, which is further reducedby
the heuristic we propose to automatically generate an initial
set of labeled data.

We demonstrate the performance of the proposed method
using electricity load data from the UK. By providing a very
small number of labeled outlying cases it correctly identifies
other unlabeled outliers in-sample and in unseen out-of-
sample data. We compare our approach with unsupervised
k-means time series clustering and supervised multilayer
perceptron (MLP) based classification, demonstrating the
superiority of the proposed method.

The rest of this paper is organized as follows: Section
II provides details of the proposed methodology. In section
III we provide information regarding the data that we use to
assess the performance of the algorithm and the experimental
setup, while Section IV presents the empirical evaluation
results and discusses its accuracy in contrast to unsupervised
and supervised alternatives. We conclude in Section V.

II. M ODEL DESCRIPTION

Semi-supervised learning is as an attractive modeling
approach when there is an abundance of mostly unlabeled
data [17]. In the context of electricity load forecasting,
although it is easy to collect large amounts of data, these
are unlabeled and manual exploration is required to identify
unusual patterns. LetX be a set of observations, split into
XL with known labelsCL and the remaining unlabeledXU .
An unsupervised algorithm can use bothXL andXU but
makes no use ofCL; while, a supervised algorithm uses only
XL and CL and is unable to useXU . A semi-supervised
algorithms make use of all [17]. In our implementation that

we will discuss here, we follow the paradigm of self-training,
where a classifier is first trained onXL and CL, with a
typically small sample of labeled cases. Consequently the
classifier is used to labelXU . The most confidently labeled
observations fromXU are added to the training set and the
classifier is re-trained. Eventually the classifier uses both the
initially provided label cases and its own predictions to train.
Self-training has been favorably compared to supervised
learning on a variety of tasks [18], [19]. The requirement
of a small number of of manually labeled outlying days
drastically limits the cost and effort associated with manual
exploration of high frequency data sets.

Suppose a time seriesY = (y1, . . . , yn) with n observa-
tions. This can be split intoS vectorsX = (x1, . . . , xS),
of length s so thatxi = (y(i−1)s+1, . . . , yis), i.e. eachxi
containings observations fromY successively. For example
if Y is sampled every hour ands = 24, eachxi would be a
vector containing observations of a complete day of the time
series. If the number of observations is not exactly divisible
by s thenxS will have missing values. We define two classes;
a seasonal vectorxi can be normal or can be an outlier. We
assume that we are providedSL < S number of labelsCL

corresponding toXL ⊂ X. Only labels of outlying patterns
are required for this implementation and typicallySL will
be much smaller thanS, since these will correspond to a
small number of the observation belonging only to one of
the two classes. Now we have two sets of seasonal vectors,
the labeledXL and the unlabeledXU = X\XL that contains
the remaining elements ofX.

Often high frequency time series have multiple season-
alities, if such exist, to aid the algorithm we remove the
irrelevant seasonalities using a low-pass filter in the formof a
moving average. Note that this will also remove any trend in
the time series. These can be identified using autocorrelation
analysis, periodograms or neural network filters as in [20] in
order to avoid limitations of the former.

Before setting up the semi-supervised learner, we need
to populateXL with cases of normal seasonal vectors.
We calculate the probability density function (PDF) of the
observations inXU for eachyj acrossxi separately using
Gaussian kernel density estimation. We then connect the
modes of each PDF to form a profileK of normal days. An
example can be seen in figures 2 and 3. In this example the
kernel density for each hour of the day has been calculated
and the modes have been identified. The corresponding
values form a seasonal profile as indicated by the kernels.
The result is a reasonable profile of the most common daily
profile, as it can be seen in 3. We resort to this method as it
allows us to be more robust to unlabeled outliers.

The next step is to record the similarity between allXU

and seasonal profileK. For this we use Pearson’s correlation,
as the objective is to identify seasonal vectors that behaveas
similar as possible with the estimated profileK. We rank
members ofXU according to their similarity and select
the φSL top ones, whereSL is the number of items in
XL and 1 ≤ φ ≤ S−SL

SL
. The selectedxui

∈ XU are
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Fig. 2. An example of how the profile is calculated using Gaussian kernels.
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Fig. 3. An example of how the profile is calculated using Gaussian kernels.

labeled as normal cases and moved toXL. We call thisX ′

L

andX ′

U = XU \ (XU ∩ X ′

L) are the remaining unlabeled
seasonal vectors. Note thatX ′

L can have unbalanced number
of normal and outlying days, depending on the parameter
φ that was chosen. For this reason and also to limit in-
troducing mislabeled cases, we suggestφ to be small. We
base this labeling strategy on the smoothness and the cluster
assumptions underlying semi-supervised learning, which can
be summarized in that points that are close will belong
to the same class [17]. The labelsC ′

L = (c′L1
, . . . , c′L

S′

L

)

corresponding toX ′

L are coded as follows: outliers are[1 0]
and normal seasonal vectors are coded as[0 1].

The next step is to develop an initial classifier that is
trained onX ′

L with targetsC ′

L. We use MLP for the classifier.
MLPs are well researched and have been used successfully
in numerous classification tasks; for a survey see [21]. We
use a single hidden layer MLP withh = (1, . . . , H) hidden
nodes and provides inputs, one for eachyij ∈ xi and
j = (1, . . . , s). For instance ifs = 24 we provide24 inputs,
one for each hour of the day. Given the coding of the targets
two output nodesk = (1, 2) are required, providing predicted
labelsĈ ′

L = (ĉ′L1
, . . . , ĉ′L

S′

L

).

ĉ′Li
=

[

ĉ′Li1
ĉ′Li2

]

,

ĉ′Lik
= βk0 +

H
∑

h=1

βkhg



γh0 +
s

∑

j=1

γhjyij



,
(1)

where w = (β, γ) are the network weights andβ =
(β11, . . . , β2H), γ = (γ11, . . . , γHs) are the weights for the
output and the hidden layer respectively. Theβk0 andγh0 are
the biases of each neuron. The hidden nodes use a nonlinear
transfer functiong(·), which is usually either the sigmoid
logistic or the hyperbolic tangent function. MLPs offer
extensive degrees of freedom in modeling for classification
tasks. The modeler must choose the appropriate data pre-
processing, the number of hidden nodes, the transfer function
within nodes, the training algorithm and the cost function.We
provide further details of our selections in section III, where
we discuss the experimental setup we used to evaluate the
proposed method. Figure 4 illustrates the setup of a network
for s = 24 and5 hidden nodes that use the hyperbolic tangent
transfer function (TanH).

We train the initial classifier onX ′

L with targetsC ′

L and
use it to classify the complete sampleX. AsX = X ′

L∪X ′

U

the network produces forX ′

U labelsĈ ′

U = (ĉ′U1
, . . . , ĉ′U

S′

U

).

The next step is to identify the seasonal vectors that have
been labeled with the highest confidence. We reverse it to
minimizing lack of confidence; therefore we define diffidence
Ψ = (ψ1, . . . , ψS′

U
) as the minimum absolute distance

between the predicted̂c′Ui
and either target[1 0] or [0 1], for

the seasonal vector being outlying or normal respectively:

ψi = min
{∣

∣ĉ′Li1
− 1

∣

∣+
∣

∣ĉ′Li2

∣

∣ ,
∣

∣ĉ′Li1

∣

∣+
∣

∣ĉ′Li2
− 1

∣

∣

}

. (2)

If ĉ′Ui
is equal to either[1 0] or [0 1] the diffidenceψi will be

equal to zero that is the minimum possible value, or consi-
dering the reverse the classifier has maximum confidence on
labeling this observation. If̂c′Ui

has any different value then
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Fig. 4. MLP with inputs fors = 24 and5 hidden nodes.



ψi > 0, which will be increasing in relation to the absolute
distance from the defined coding of the classes. We prefer
absolute to square metric in the definition of diffidence as the
former is more robust to extreme values [9], [22]. Although
alternative coding schemes for binary classification problems
can be implemented, using the discussed two outputs coding
is useful for defining the diffidence metric.

We rank the newly labeled observations according to their
diffidence and calculate thePΨ percentile of the distribution
of Ψ, which we use as a selection threshold. We define a
new set of observationsX ′′

L that includes all labeled seasonal
vectors withψi ≤ PΨ. These are the seasonal vectors that
are classified with the highest confidence. We replaceX ′

L by
X ′

L ∪X ′′

L and self-training is achieved by inputting the new
X ′

L again to the classifier as training data, essentially merging
the previously labeled training set with the newly labeled set
of observations, thus expanding the training set to include
previously unknown labels. By repeating this process the
semi-supervised neural network is able to use both originally
labeled and unlabeled seasonal vectors during training. This
process can be repeated iteratively until no more observations
can be added to the training setX ′

L, where training finishes
and the network is ready to be used to classify both observed
and future unlabeled seasonal vectors.

Selecting the percentilePΨ allows to control the tolerance
of the neural network to using labels with low confidence
during training and also the speed that new observations
are added to the training set. Lower percentiles will make
each iteration of self-training to use only a few additional
samples, while a high percentage will allow observations
with low confidence. The final training setX ′

L ⊆ X as some
observations may never be labeled with lower diffidence than
PΨ and subsequently be included inX ′

L.

Note that at each iteration when replacingX ′

L by X ′

L ∪
X ′′

L we implicitly assume that all labels inC ′

L from the
previous iteration, corresponding to the oldX ′

L, are correct.
However,C ′

L is the output of the semi-supervised neural
network, which we cannot assess whether it is true or not
and is associated with some confidence that can change at
each iteration. Similarly, theφSL normal seasonal vectors
identified using the proposed heuristic during the initial setup
of the classifier are always retained inX ′

L even though their
confidence may be low. These may cause the network to train
on mislabeled observations, resulting in poor performanceof
the method. This issue can be resolved by replacingX ′

L by
XL∪X

′′

L at each iteration. Recall thatXL are the initial man-
ually labeled seasonal vectors andX ′′

L contains the seasonal
vectors that have been labeled with the highest confidence
only during the last iteration. This way all labels, except those
assigned toXL, are re-assessed for confidence repeatedly and
observations that fail to be selected are removed from the
training set. However, this approach risks using less sample
for the final semi-supervised network, while requiring a high
number of training iterations.

Figure 5 provides a summarized view of the described
algorithm, illustrating the steps of data preparation, thesemi-

Fig. 5. Flowchart of proposed algorithm.

supervised neural network and the application of the final
classifier. Note that the outlined method assumes that there
is no trend in the time series; if such exists, it can be removed
by an appropriate filter.

III. E XPERIMENTAL DESIGN

A. Data

To assess the performance of the proposed semi-supervised
neural network we use an electricity load time series from
the UK, sampled at hourly intervals, from the 1st of April
2001 01:00 until the 1st of November 2008 01:00, amount-
ing to 66505 hourly observations or 2771 days. Although,
electricity load data have stable characteristics, exploring
and modeling them is not trivial. The data exhibit triple
seasonality, having an hour in the day cycle, day of the
week and annual patterns. Two leap years are contained, 2004
and 2008, distorting the annual periodicity. The load profile
of each day exhibits three distinct patterns for each day,
associated to winter, summer and transitional consumption
profiles. Figure 6 demonstrates the patterns for summer and
winter for Thursday. In order avoid cluttering the figure
we plotted transitional profiles together with summer days.
Observe that they differ both in average level of consumption
and but more importantly in shape, especially after 16:00. UK
uses daylight saving, translated into one moving date day in
either March or April having 23 hours and another moving
date day in October having 25 hours every year. All these
characteristics make detection of outliers challenging, as one
has to consider changes in both the shape of the daily profiles
and in the level of consumption that belong to normal days.
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Fig. 6. Summer and winter consumption profiles for Thursday.

Through manual exploration we identified 63 unusual
load profiles, which in many cases were associated with
bank holidays, though not always. Figure 7 illustrates these
unusual profiles. As we did not identify any outliers over
weekend days we do not plot Saturdays and Sundays to keep
the figure clear.
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Fig. 7. Outlying daily profiles over complete sample.

For this empirical evaluation we will provide outlying
days from 2001 as priorly labeled data. These are only 7
labels. Following the notation used in the previous section,
XL contains the 7 labeled outlying days from 2001, with
CL having the corresponding labels, andXU containing the
remaining 2764 unlabeled days. We identify normal days,
by selecting the 50% percentile (median) as cut-off point
for including new labels in the training set andφ = 3,
i.e. we automatically label 21 normal daily profiles before
training the classifier, bringing the total number of training
samples to 28. All remaining 2743 days are used to evaluate
the performance of the method.

B. Methods

We use the semi-supervised network classifier we pre-
sented in section II. To train the network we randomly
separate the labeled data to equal size training and validation
subsets. The networks are trained using the Levenberg-
Marquardt algorithm, which requires setting theµLM and
its increase and decrease steps. HereµLM = 10−3, with
an increase step ofµinc = 10 and a decrease step of
µdec = 10−1. For a detailed description of the algorithm
and the parameters see [23]. This training algorithm allows
for fast training, essential for self-training. The maximum
training epochs are set to 1000. Mean squared error is used as
a training cost function and is recorded for both training and
validation sets. The training can stop earlier ifµLM becomes
equal of greater thanµmax = 1010 or the validation error
increases for more than 25 epochs. This is done to avoid over-
fitting. When the training is stopped the network weights that
give the lowest validation error are used. The 1000 epochs
training limit was never exceeded due to the early stopping
criterion. Each MLP is initialized 10 times with randomized
starting weights to accommodate the nonlinear optimization.
The MLP initialization with the lowest error for each on
the validation dataset is used. The inputs are linearly scaled
between[−1, 1]. To assess the sensitivity on the size of the
hidden layer we use from 1 up to 20 hidden nodes.

We compare the results of the proposed method with a
conventional supervised MLP classifier. Its setup is identical
to the semi-supervised MLP with the exception that no self-
training takes place. Furthermore, we use an unsupervised k-
means time series clustering approach, with two clusters, one
for normal days and one for outlying ones. We experimented
with different setups and found the best to be using Euclidean
distance as a similarity measure, after the data have been
preprocessed to remove annual seasonality. Correlation based
similarity did not perform well. The semi-supervised network
is the most complex and computationally expensive method,
therefore it is useful only if it outperforms both supervised
and unsupervised approaches.

C. Experimental Setup

We will employ all models outlined before to predict the
labels Ĉ ′

U in XU . These will be compared with the actual
ĈU to assess the performance of the methods. For this we
will employ two criteria. First, the Area Under the Curve
(AUC) is used, which has been argued to be more desirable
performance measure than accuracy [24], [25]. Because of
the large number of normal days we also define Outlier Rate
(OR) similarly to sensitivity to highlight the performance of
the methods solely for outliers:

OR =
TP

TP + FP + FN
, (3)

where TP are the true positives, i.e. correctly identified
outliers, FP are the false positives used for undetected
outliers andFN are false negatives, which are normal days
misidentified as outliers. Therefore,OR measures labeled



TABLE I

AREA UNDER THE CURVE (AUC) RESULTS BY METHOD.

Hidden Supervised Semi-supervised Unsupervised
Nodes (H) Learning Learning Learning

1 0.999 0.999 0.818
2 0.999 0.999 0.818
3 0.967 0.967 0.818
4 0.968 0.976 0.818
5 0.975 0.967 0.818
6 0.973 0.976 0.818
7 0.991 0.976 0.818
8 0.997 0.982 0.818
9 0.990 0.991 0.818
10 0.965 0.983 0.818
11 0.968 0.968 0.818
12 0.996 0.998 0.818
13 0.967 0.984 0.818
14 0.996 0.968 0.818
15 0.965 0.996 0.818
16 0.929 0.960 0.818
17 0.905 0.960 0.818
18 0.920 0.968 0.818
19 0.960 0.992 0.818
20 0.994 0.968 0.818

Mean 0.971 0.979 0.818
Median 0.971 0.976 0.818
St Dev. 0.027 0.013 -

outliers as a ratio of all true and wrongly identified outliers.
OR can be between zero and 100% and in the first case it
is interpreted as no success in detecting outliers, whilst in
the second it is interpreted as complete success in accurately
identifying all outliers in the sample. The difference between
this metric and sensitivity is that this one penalizes the result
for false negatives, or in this context for incorrectly labeled
normal seasonal vectors. True positives and negatives were
identified by manual exploration of the original data.

Last but not least, for any automatic implementation it is
important to assess the robustness of a method to different
settings. We will focus on both aspects of accuracy (AUC
and OR) and robustness in the presentation of the results.

IV. RESULTS

The results for AUC for all experiments are presented
in table I. The first column provides the results for the
supervised network, the second for the semi-supervised one
and the third for the unsupervised k-means clustering. Each
row shows the result for a different number of hidden nodes.
Mean, median and standard deviation summary statistics are
provided at the end of the table. The results for k-means
are just replicated across the rows and therefore no standard
deviation is provided, as it is not meaningful.

We can observe that the unsupervised results are inferior
to either supervised or semi-supervised, on average by about
0.15. Comparing between the networks we can see that
for small number of hidden nodes (H ≤ 3) the semi-
supervised approach does not offer any advantages, resulting
in the same AUC. Thereafter, in 12 cases the semi-supervised
classifier outperforms the supervised one, while on 5 cases,
H = {5, 7, 9, 14, 20}, the supervised performs best. Both
mean and median performance favors the semi-supervised

approach, which also has substantially lower standard devi-
ation across the AUC results for different number of hidden
nodes, demonstrating a superior overall performance.

In this setting that the sample contains mostly unlabeled
cases it is difficult to decide the correct number of hidden
nodes a-priori or even after simulations. Assuming enough
labeled cases, one could withhold some and test the per-
formance of different sizes of hidden layer. However, this
case, as well as other cases that the semi-supervised approach
is preferable, there is not abundance of labeled instances
to withhold. Ideally, the model should be robust to the
number of hidden nodes and exhibit good and consistent
performance across a wide range of values. In table I we
can see that the proposed semi-supervised approach has
low sensitivity to the number of hidden nodes and shows
small AUC variability. Based on this result we can infer that
the method is robust and fine-tuning the number of hidden
nodes has small impact, which is also demonstrated in the
lower AUC standard deviation. Note that the limited training
sample cause problem for the performance of the supervised
MLP for large hidden layers, which is overcome in the case
of the semi-supervised approach. Robustness to settings isa
key advantage for any automatic implementation, which the
proposed semi-supervised method possess.

The results in table I consider all 2771 days in the sample,
out of which only 2.3% are outliers. In order to assess in
more detail the performance of the competing methods in
detecting and labeling correcting outlying days we investigate
the results in table II that contains the Outlier Rate percent.
The OR intuitively is the number of classifiers over all
existing outliers and normal days that are misclassified as
outliers, or simply correctly detected outliers divided bythe
number of detected and undetected, correctly or not, outliers.
The table has identical structure to table I that we discussed
before.

The differences between the models are now more appar-
ent. In agreement with the previous results, we can see that
the unsupervised approach is inferior, achieving anOR of
only 15.8%. It is useful to stress that given the small number
of outliers we could not anticipate good performance of k-
means, however this is not due to failings of the method, or
its application, but rather due to the problem’s characteristics.
As expected in the light of the previous results, the first
three rows for low number of hidden nodes are identical
between the supervised and the semi-supervised models.
However, consideringOR we can observe that in all but
one of the remaining cases the semi-supervised network
labeled the outlying days more accurately. ForH = 5 the
supervised MLP is better by 1.5%OR. Consulting the sum-
mary statistics we can see that the semi-supervised method
is better by about 8%OR overall and has significantly
lower standard deviation. Again, we conclude that the semi-
supervised neural network is insensitive to the number of
hidden nodes, however we can see that the relative difference
from the supervised MLP is higher for larger hidden layers.
We highlight the results forH = 15 that the supervised MLP,



TABLE II

OUTLIER RATE (OR)% RESULTS BY METHOD.

Hidden Supervised Semi-supervised Unsupervised
Nodes (H) Learning Learning Learning

1 94.030 94.030 15.842
2 95.455 95.455 15.842
3 89.394 89.394 15.842
4 92.188 93.750 15.842
5 90.909 89.394 15.842
6 81.081 92.308 15.842
7 92.537 93.750 15.842
8 86.301 87.143 15.842
9 87.324 93.939 15.842
10 79.730 92.424 15.842
11 92.188 93.651 15.842
12 81.818 87.500 15.842
13 86.765 95.313 15.842
14 80.769 92.188 15.842
15 31.980 80.769 15.842
16 85.714 92.063 15.842
17 80.952 92.063 15.842
18 82.813 93.651 15.842
19 92.063 96.875 15.842
20 74.118 93.651 15.842

Mean 83.906 91.966 15.842
Median 86.533 93.038 15.842
St Dev. 13.502 3.647 -

which is also the initial classifier for the semi-supervised
network, has anOR=32% that is improved through self-
training by the semi-supervised model to 81%.

We found minimal differences in the results of the semi-
supervised model if we allowed it to re-assess the labeling
confidence of all seasonal vectors or not, as discussed in
section II. Selecting different percentiles forPΨ had impact
on the rate that observations entered the training set and final
number of observations considered, but had small impact on
the quality of the final classifier. Figure 8 provides examples
for a network with 10 hidden nodes. The algorithm is run
for different percentilesPΨ, given in brackets; for example
PΨ(20%) is the 20% percentile. The number of training
iterations are marked on the horizontal axes and the vertical
axis the percent of the total available sample used for training
at each iteration. The final training point for eachPΨ is
circled and its respectiveOR is provided. We can see that
in most cases four to five training iterations were required
and the final training samples between percentiles differ
substantially. On the other hand, disregardingPΨ(100%),
the maximum difference inOR is only 3%. The network
that usesPΨ(100%) learns new labels too fast, which results
in low performance. The relevant supervised MLPOR is
79.7% as we can see in table II. Figure 8 provides results
for networks that do not re-assess the labeling confidence of
observation that are already in the training sample. Figure9
shows the same simulations for networks that re-assess the
labeling confidence and can add as well as remove instances
from the training sample. While the resultingOR for all
cases is identical, the training sample profiles are substan-
tially different, resulting overall in lower sample usage.
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Fig. 8. Training behaviour of semi-supervised network with 10 hidden
nodes for differentPΨ. The network is not allowed to re-assess labeling
confidence of instances in the training set.
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Fig. 9. Training behaviour of semi-supervised network with 10 hidden
nodes for differentPΨ. The network is allowed to re-assess labeling
confidence of instances in the training set.

V. CONCLUSIONS

In this paper we presented a semi-supervised neural net-
work algorithm to detect and identify unusual load profiles
in hourly electricity load time series. The key advantage of
the proposed method is that it does not need a large sample
of labeled data that may be challenging and costly to collect
due to the nature of the time series. We used the Area Under
the Curve (AUC) to assess the overall accuracy and defined
a metric targeted at measuring outlier detection, the Outlier
Rate (OR) and showed empirically that the algorithm, in
comparison to conventional supervised and unsupervised
approaches, performs consistently more accurate and robust,
for several design parameters, such as the number of hidden
nodesH, the training sample selection thresholdPΨ and the
design decision of whether to reevaluate the output labels
of the algorithm from the previous training iterations or not.
We showed that robustness was achieved through the semi-
supervised learning scheme, rather than as a property of



the MLPs. The robustness to design parameters is crucial
for applications that have a few labeled cases and therefore
semi-supervised methods are used, since in practice we don’t
have many labeled cases to evaluate their performance. Also,
we proposed a heuristic to populate the initial sample of
labels with additional cases of normal seasonal vectors, thus
reducing further the required number of labels. We found
that the heuristic was producing useful labels as they were
retained in the final training set, even when the algorithm
was allowed to remove them.

The objective of the proposed method is twofold. From
one hand is to provide a dedicated monitoring tool for
electricity load time series, which is commonly overlooked
in research and practice alike. In several cases, tools from
conventional low frequency time series exploration are ap-
plied to electricity load, although they are not designed
to deal with high frequency time series and can provide
erroneous results. Its second purpose is to aid in time series
forecasting. Unusual load profiles are commonly excluded
from modeling an electricity load time series and are either
replaced by a normal profile day or removed altogether.
Even if a forecasting method allows for special treatment
of the outliers, one has to be able to detect them fast and
reliably as new data become available. The advantage of
the proposed algorithm is that it can both provide such
information and also learn from useful new cases to improve
its discriminatory power. Although in this study we used
MLPs at the core of the algorithm due to their properties,
other algorithms with similar learning capabilities, suchas
Support Vector Machines, can be explored.

The superior performance comes at the cost of additional
complexity and computational cost. An important question
that needs to be addressed is when the semi-supervised
approach is required. The key decision variable is the avail-
ability and the cost of labeled cases to form the initial training
set. Electricity load time series typically involve very large
samples, which are difficult to manipulate and explore, mak-
ing manual labeling time consuming and costly. Moreover,
these time series exhibit particular problems, such as daylight
saving, leap years, multiple overlaying seasonalities, etc. that
increase the complexity and the difficulty of manual analysis
further.

Next steps in this research are to explore in detail the
relation of the parameterφ, used to initialize the labeled
training sample, with the performance of the method, as
well as explore the interactions and possible heuristics for
choosing the remaining design parameters. The ultimate
evaluation of the value of this algorithm is its impact on
forecasting accuracy and decision making; therefore, we plan
to integrate this into a forecasting model and measure directly
its impact to forecasting accuracy.
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