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Abstract— In this paper we propose a semi-supervised neural forecasting evaluation, where large errors are introdwlex
network algorithm to identify unusual load patterns in hourly  to atypical observations, often masking the real perforraan
electricity demand time series. In spite of several modeling and differences between the models considered [7], [9]. Tagtor

forecasting methodologies that have been proposed, there have | ack led this i d hd It th
been limited advancements in monitoring and automatically al. acknowledages this ISsue and removes such aays altogethe

identifying outlying patterns in such series. This becomes more DY replacing them, in order to simplify the application and
important considering the difficulty and the cost associated with  evaluation of the examined forecasting methods [6]

mbanual t_axplor%[]ion of sucz data, d;? to thzfa vasL nlrJ]rTbsrlo(l; It is important to distinguish between point outliers, wder
observations. The proposed network learmns from both labeled o o consecutive points in a time series, present abnormal

and unlabeled patterns, adapting automatically as more data . . . . .
become available. This drastically limits the cost and effort Pehavior, depending if these are additive or innovative out

associated with exploring and labeling such data. We compare liers [8], [10] and functional outliers [11]. In the lattease

the proposed method with conventional supervised and unsuper- we are interested in analyzing data providing information
vised approaches, demonstrating higher accuracy, robustness ghout curves, surfaces, etc as a whole varying over time.
and efficacy on empirical electricity load data. In the context of electricity load these could be complete

I. INTRODUCTION days. In this paper we focus on the problem of efficiently

CCURATE predictions of electricity load data areldentifying outlying daily patterns, which can be consifbr

required for a large variety of applications, such adunctional outliers, though in this analysis we do not as-
trading electricity and scheduling production. In the tast- Sume that this data are produced from smooth continuous
ing literature such data are considered high frequency tinfgnctions, as is the norm in functional data analysis [11],
series, where predictions are required at hourly or shorté¥2]. Figure 1 provides an example of the outliers we are
intervals. Although a strict definition of what constitutas considering. In this example an hourly time series is split
high frequency time series does not exist, typically wemrrefdnto daily profiles and we highlight outliers against normal
to data that their sampling rate is daily or less and theesfoflays. We can observe that outlying days can differ both in
result in vast amounts of data [1], introducing new issues ifhe level, making them easy to spot like normal outliers, but
data handling, analysis and modeling. Use of conventiondlSo in the shape, which are harder to spot and limits the
statistical modeling approaches, designed for low freqen usefulness of functional boxplots that can be otherwisel use
time series becomes problematic in these cases [2]. In tk Visualize temporal curves and outliers [13]. The diffigul
field of electricity load forecasting several modeling noeth of the later case is increased if the difference in shape does
ologies for such time series have been proposed [3], [4], [5]°t span the whole day.
[6]; however, there have been limited advancements in dataRelated approaches have employed residual analysis [8],
monitoring and automatic outlier identification. Outligrs time series clustering and classifications methodolodid$ |
electricity load can be caused by several reasons, such as
major events like natural disasters or bank holidays or more
subtle like disruptions in industrial production, strikesc 130000
which are harder to be aware of and model their effect on
electricity load, making outlier identification and impeamt
problem for this domain.

This omission is crucial for a number of reasons. Time
series models often require data cleaning, which involves 90000
modifying or removing outliers and obvious errors in the  8oooo
database [7], therefore implicitly assuming that this info 70000
mation is available, which in fact requires costly manual 5,59 |
collection. On the other hand, not cleaning the data can
have substantial effects on model specification and param-
eters [8]. Furthermore, outliers can introduce problems in
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belonging to a broader group of outlier detection researaklie will discuss here, we follow the paradigm of self-tramin
using both unsupervised and supervised learning algosithnwhere a classifier is first trained oX; and Cpr, with a
such as k-means, self-organizing maps, MLP and RBF neipically small sample of labeled cases. Consequently the
works, etc [15], [16]. The limitations of these approactes iclassifier is used to labeX;. The most confidently labeled
that they either require extensive knowledge of the data, observations fromX;; are added to the training set and the
they do not consider prior information that may be availableclassifier is re-trained. Eventually the classifier use$ Iiog¢

In the first case classification algorithms are employed ftinitially provided label cases and its own predictions trtr
distinguish between normal and outlying days, which musgelf-training has been favorably compared to supervised
be first trained on a large number of labeled cases in order lgarning on a variety of tasks [18], [19]. The requirement
be used to classify future data. Their weakness is the cdst aof a small nhumber of of manually labeled outlying days
complexity associated with manually labeling high frequen drastically limits the cost and effort associated with manu
data. On the other hand, unsupervised methods do not requésgloration of high frequency data sets.

prior knowledge; however, this can also limit their accyrac  Suppose a time serié$ = (y1,...,yn) With n observa-
in identifying correctly the outlying seasonal profiles.this  tjons. This can be split int& vectors X = (z1,...,25),
paper we proposed a semi-supervised neural network methgdiength s so thatz; = (Y(i-1)s+1>- - - Yis), 1.€. eachx;
that balances the ability to infer knowledge from the daté ancontainings observations fron¥” successively. For example
make use of prior information, such as known labeled cases.y is sampled every hour and= 24, eachz; would be a
The contribution of this paper is to propose a novel semizector containing observations of a complete day of the time
supervised automatic outlier identification method, baseskries. If the number of observations is not exactly diksib
on self-training a neural network classifier, for detectingy s thenxzg will have missing values. We define two classes;
unusual load patterns in hourly electricity load time serie 3 seasonal vectar; can be normal or can be an outlier. We
The innovation lies in the combination of the strengths oissume that we are providet}, < S number of labels”,
self-training and neural network models to robustly andorresponding ta¥; c X. Only labels of outlying patterns
accurately automatically identify outliers in electiclata. are required for this implementation and typicaBly, will
The key advantages of the proposed algorithm is that it doge much smaller thars, since these will correspond to a
not require a large number of labeled samples that may Benall number of the observation belonging only to one of
challenging and costly to collect, which is further redubgd the two classes. Now we have two sets of seasonal vectors,
the heuristic we propose to automatically generate aralnitithe |labeledX ;, and the unlabeled; = X\ X, that contains
set of labeled data. the remaining elements of.
We demonstrate the performance of the proposed methodqan, high frequency time series have multiple season-
using electricity load data from the UK. By providing a Verygjisies it such exist, to aid the algorithm we remove the
small number of labeled outlying cases it correctly ideesifi i q|eyant seasonalities using a low-pass filter in the fofra

other unlabeled outliers in-sample and in unseen out-Ofo\ing average. Note that this will also remove any trend in
sample data. We compare our approach with unsupervisggl, time series. These can be identified using autocowelati

k-means time series clustering and supervised multilayef,,\is periodograms or neural network filters as in [20] i
perceptron (MLP) based classification, demonstrating tht?rder to avoid limitations of the former.

superiority of the proposed method.
The rest of this paper is organized as follows: Sectiop0

I prowdes. det_a|ls of the proposgd methodology. In sectlowe calculate the probability density function (PDF) of the
IIl we provide information regarding the data that we use tg bservations inXy for eachy; acrossz; separately using
assess the performance of the algorithm and the experimen%a v Yi !

setup, while Section IV presents the empirical evaluation aussian kernel density estimation. We then connect the

. . . -modes of each PDF to form a profilé of normal days. An
results and discusses its accuracy in contrast to unssgervi L .
. . . . example can be seen in figures 2 and 3. In this example the
and supervised alternatives. We conclude in Section V.

kernel density for each hour of the day has been calculated
Il. MODEL DESCRIPTION and the modes have been identified. The corresponding

Semi-supervised learning is as an attractive modelingglues form a seasonal profile as indicated by the kernels.
approach when there is an abundance of mostly unlabeléfe result is a reasonable profile of the most common daily
data [17]. In the context of electricity load forecastingprofile, as it can be seen in 3. We resort to this method as it
although it is easy to collect large amounts of data, thegdlows us to be more robust to unlabeled outliers.
are unlabeled and manual exploration is required to identif The next step is to record the similarity between j}
unusual patterns. LeX be a set of observations, split into and seasonal profil&. For this we use Pearson’s correlation,
X, with known labelsC;, and the remaining unlabelel;;.  as the objective is to identify seasonal vectors that behave
An unsupervised algorithm can use bakfy, and X;; but similar as possible with the estimated profié. We rank
makes no use af';; while, a supervised algorithm uses onlymembers of X;; according to their similarity and select
X and Cy, and is unable to us&. A semi-supervised the ¢S, top ones, whereS;, is the number of items in
algorithms make use of all [17]. In our implementation that{;, and1 < ¢ < % The selectedr,, € Xy are

Before setting up the semi-supervised learner, we need
populate X; with cases of normal seasonal vectors.
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where w = (8,7) are the network weights ang =
(B11y---, B2m), v = (111, .-, yHs) are the weights for the

output and the hidden layer respectively. Thg and~;, are
the biases of each neuron. The hidden nodes use a nonlinear
transfer functiong(-), which is usually either the sigmoid
- logistic or the hyperbolic tangent function. MLPs offer

Hour 24 extensive degrees of freedom in modeling for classification
tasks. The modeler must choose the appropriate data pre-
Fig. 2. An example of how the profile is calculated using Gauskernels.  Processing, the number of hidden nodes, the transfer famcti
within nodes, the training algorithm and the cost functife.
provide further details of our selections in section Ill,euh
‘ we discuss the experimental setup we used to evaluate the
Ef;%e proposed method. Figure 4 illustrates the setup of a network
100000 1 for s = 24 and5 hidden nodes that use the hyperbolic tangent
transfer function (TanH).

We train the initial classifier od{; with targetsC; and
use it to classify the complete sampte As X = X; UX|;
the network produces fak, labelsCy, = (s -5y, )-

The next step is to identify the seasonal vectors that have
been labeled with the highest confidence. We reverse it to
minimizing lack of confidence; therefore we define diffidence
50000 ‘ ‘ ‘ ‘ ‘ U = (¢1,...,%g,) as the minimum absolute distance

A A between the predicted}, and either targeftt 0] or [0 1], for

the seasonal vector being outlying or normal respectively:
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Fig. 3. An example of how the profile is calculated using Gars&ernels.
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If ¢, is equal to eithefl 0] or [0 1] the diffidencey; will be
and X}, = Xy \ (Xy N X}) are the remaining unlabeled equal to zero that is the minimum possible value, or consi-

seasonal vectors. Note thdt, can have unbalanced numberd%r'?.g tht(ra]_revirse th? C|6.f;lflil‘ has m?f}mumt cor;ﬁdt:kr:ce on
of normal and outlying days, depending on the parametg? €ling this observation. i, has any difierent value then

¢ that was chosen. For this reason and also to limit in-
troducing mislabeled cases, we suggeésio be small. We

base this labeling strategy on the smoothness and the rclus
assumptions underlying semi-supervised learning, which ¢ =~ ¥«

Yio2

be summarized in that points that are close will belon: ¥

Yioa

to the same class [17]. The label§ = (c’Ll,...,c’LS, ) e
. . L Yior
corresponding toY; are coded as follows: outliers afe 0] thoe
and normal seasonal vectors are codedlas. it
The next step is to develop an initial classifier that is

. . g Yi14
trained onX/, with targetsC; . We use MLP for the classifier. .
Yi16

MLPs are well researched and have been used successfi a7
. e . i18
in numerous classification tasks; for a survey see [21]. W v

Yi20

labeled as normal cases and moveditp. We call thisX7,

use a single hidden layer MLP with= (1,..., H) hidden vt
nodes and provides inputs, one for eachy;; € x; and vz
j=(1,...,s). For instance ifs = 24 we provide24 inputs,

one for each hour of the day. Given the coding of the targe
two output nodeg = (1, 2) are required, providing predicted

labelsC} = (é/Ll’ . é/Ls'L )- Fig. 4. MLP with inputs fors = 24 and5 hidden nodes.




¥; > 0, which will be increasing in relation to the absolute

START Time
distance from the defined coding of the classes. We prefel Series

absolute to square metric in the definition of diffidence a&s th
former is more robust to extreme values [9], [22]. Although
alternative coding schemes for binary classification protd

Given
. . . . labeled
can be implemented, using the discussed two outputs coding i litliers ;

is useful for defining the diffidence metric.
We rank the newly labeled observations according to their

Separate into
seasonal vectors

v

Compare with K and
label S normal
seasonal vectors

|

y

diffidence and calculate thBy percentile of the distribution

Merge labeled

Use kernel density
estimation to find
profile K

of ¥, which we use as a selection threshold. We define a cases into X’

new set of observation¥/ that includes all labeled seasonal

vectors withy; < Py. These are the seasonal vectors that y No—+

are classified with the highest confidence. We replE¢eby

X7 U XY and self-training is achieved by inputting the new Train MLP i Final classifier is
X' again to the classifier as training data, essentially mgrgin trained
the previously labeled training set with the newly labeletl s . -

of observations, thus expanding the training set to include| _

; . . Predict labels for Label complete
previously unknown labels. By repeating this process the| compiete sample sample of
semi-supervised neural network is able to use both orilginal seasonal vectors
labeled and unlabeled seasonal vectors during training. Th ¢
process can be repeated iteratively until no more obsen@ti [ seiect confidently
can be added to the training s&, , where training finishes labeled END

and the network is ready to be used to classify both observeq _©Psevations

and future unlabeled seasonal vectors.

Selecting the percentil®g allows to control the tolerance
of the neural network to using labels with low confidence

during training and also the speed that new observatioRgneryised neural network and the application of the final
are added to the training set. Lower percentiles will makg|assifier. Note that the outlined method assumes that there

each iteration of self-training to use only a few additionajg n, trend in the time series: if such exists, it can be remove
samples, while a high percentage will allow observationgy an appropriate filter.

with low confidence. The final training s&f; C X as some
observations may never be labeled with lower diffidence than
Py and subsequently be included Xy, . A. Data

Note that at each iteration when replaciag, by X; U To assess the performance of the proposed semi-supervised
X7 we implicitly assume that all labels 6, from the neural network we use an electricity load time series from
previous iteration, corresponding to the otd,, are correct. the UK, sampled at hourly intervals, from thét Iof April
However, C; is the output of the semi-supervised neurappo1 01:00 until the <& of November 2008 01:00, amount-
network, which we cannot assess whether it is true or ngig to 66505 hourly observations or 2771 days. Although,
and is associated with some confidence that can Changeeﬁctricity load data have stable characteristics, ejq[g)r
each iteration. Similarly, theS;, normal seasonal vectors and modeling them is not trivial. The data exhibit triple
identified using the proposed heuristic during the initetlll  seasonality, having an hour in the day cycle, day of the
of the classifier are always retained iy, even though their \veek and annual patterns. Two leap years are contained, 2004
confidence may be low. These may cause the network to traifid 2008, distorting the annual periodicity. The load peofil
on mislabeled observations, resulting in poor performaifce of each day exhibits three distinct patterns for each day,
the method. This issue can be resolved by replaciijgby  associated to winter, summer and transitional consumption
XpUX7 ateach iteration. Recall thaf, are the initial man- profiles. Figure 6 demonstrates the patterns for summer and
ually labeled seasonal vectors aig contains the seasonal winter for Thursday. In order avoid cluttering the figure
vectors that have been labeled with the highest confidengg plotted transitional profiles together with summer days.
only during the last iteration. This way all labels, excémide  Observe that they differ both in average level of consunmptio
assigned toX ., are re-assessed for confidence repeatedly ag@ld but more importantly in shape, especially after 16:00. U
observations that fail to be selected are removed from th%es day||ght Saving, translated into one moving date day in
training set. However, this approach risks using less sampéither March or April having 23 hours and another moving
for the final semi-supervised network, while requiring athig date day in October having 25 hours every year. All these
number of training iterations. characteristics make detection of outliers challengisgrme

Figure 5 provides a summarized view of the describetas to consider changes in both the shape of the daily profiles
algorithm, illustrating the steps of data preparation,gbmni- and in the level of consumption that belong to normal days.

Fig. 5. Flowchart of proposed algorithm.

I1l. EXPERIMENTAL DESIGN
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130000
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120000 | We use the semi-supervised network classifier we pre-

110000 | sented in section Il. To train the network we randomly

separate the labeled data to equal size training and vialidat
subsets. The networks are trained using the Levenberg-
Marquardt algorithm, which requires setting the,, and
its increase and decrease steps. Herg; = 103, with
an increase step ofi;,. = 10 and a decrease step of
lgee = 1071, For a detailed description of the algorithm
and the parameters see [23]. This training algorithm allows
for fast training, essential for self-training. The maximu
training epochs are set to 1000. Mean squared error is used as
a training cost function and is recorded for both training an
validation sets. The training can stop earlien jf;; becomes
equal of greater tham,,,, = 10'° or the validation error
Fig. 6. Summer and winter consumption profiles for Thursday.  increases for more than 25 epochs. This is done to avoid over-
fitting. When the training is stopped the network weights that
give the lowest validation error are used. The 1000 epochs
Through manual exploration we identified 63 unusuatlrz.iim!1g limit was never e_>_<c¢eded du_e o th_e early stopping
) N . -criterion. Each MLP is initialized 10 times with randomized
load profiles, which in many cases were associated wif

. . : Starting weights to accommodate the nonlinear optiminatio
bank holidays, though not always. Figure 7 |Ilustratesehesrhe MgLP ir?itialization with the lowest error forpeach on

unusual profiles. As we did not identity any outliers OV€lie validation dataset is used. The inputs are linearlyeskcal

weekend days we do not plot Saturdays and Sundays to ker?gtween[—l, 1]. To assess the sensitivity on the size of the

the figure clear. hidden layer we use from 1 up to 20 hidden nodes.
We compare the results of the proposed method with a
conventional supervised MLP classifier. Its setup is idehti

100000 |
90000 |
80000
70000
60000 §
50000 [
40000 |

30000 . . . . .
4 8 12 16 20 24
Hour

130000 — to the semi-supervised MLP with the exception that no self-
120000 | —— outiier training takes place. Furthermore, we use an unsupervised k
110000 } means time series clustering approach, with two clustees, o

100000 | for normal days and one for outlying ones. We experimented

with different setups and found the best to be using Eudfidea
distance as a similarity measure, after the data have been
preprocessed to remove annual seasonality. Correlateedba
S , similarity did not perform well. The semi-supervised netiwo
60000 2 ' 4 T is the most complex and computationally expensive method,
! ] therefore it is useful only if it outperforms both superdse
and unsupervised approaches.

90000
80000

— C. Experimental Setup

2 4 6 8 10 12 14 16 18 20 22 24

Hour We will employ all models outlined before to predict the

Iabels(:’{, in Xy. These will be compared with the actual

Cy to assess the performance of the methods. For this we

will employ two criteria. First, the Area Under the Curve
For this empirical evaluation we will provide outlying (AUC) is used, which has been argued to be more desirable

days from 2001 as priorly labeled data. These are only Ferformance measure than accuracy [24], [25]. Because of

labels. Following the notation used in the previous sectiofthe large number of normal days we also define Outlier Rate

X, contains the 7 labeled outlying days from 2001, witHOR) similarly to sensitivity to highlight the performance of

C', having the corresponding labels, aAd, containing the the methods solely for outliers:

remaining 2764 unlabeled days. We identify normal days, TP

by selecting the 50% percentile (median) as cut-off point OR = , (3)

for including new labels in the training set and = 3, TP+ FP+FEN

i.e. we automatically label 21 normal daily profiles beforavhere TP are the true positives, i.e. correctly identified

training the classifier, bringing the total number of tragni outliers, FP are the false positives used for undetected

samples to 28. All remaining 2743 days are used to evaluatatliers andF N are false negatives, which are normal days

the performance of the method. misidentified as outliers. Therefor€&)R measures labeled

Fig. 7. Outlying daily profiles over complete sample.




TABLE |

approach, which also has substantially lower standard devi
AREA UNDER THE CURVE (AUC) RESULTS BY METHOD. PP y

ation across the AUC results for different number of hidden
Hidden Supervised  Semi-supervised  Unsupervised nodes, demonstrating a superior overall performance.

Nodes ¢f)  Learning Learning Learning In this setting that the sample contains mostly unlabeled

% 8:383 8:283 8:212 cases it is 'dif'ficult to decide the correct number of hidden
3 0.967 0.967 0.818 nodes a-priori or even after simulations. Assuming enough
4 0.968 0.976 0.818 labeled cases, one could withhold some and test the per-
2 8:3;2 8:8% 8:2}3 formance of different sizes of hidden layer. However, this
7 0.991 0.976 0.818 case, as well as other cases that the semi-supervised approa
8 0.997 0.982 0.818 is preferable, there is not abundance of labeled instances
190 8"32(; %ggé 82212 to withhold. _IdeaIIy, the model sho_uld be robust to_the
11 0.968 0.968 0.818 number of hidden nodes and exhibit good and consistent
12 0.996 0.998 0.818 performance across a wide range of values. In table | we
ﬁ 8:382 gzggg 8:3}3 can see that the proposed semi-supervised approach has
15 0.965 0.996 0.818 low sensitivity to the number of hidden nodes and shows
16 0.929 0.960 0.818 small AUC variability. Based on this result we can infer that
g 8:323 g:ggg gzgig the method is rob_ust and fin_e-tu_ning the number of hi_dden
19 0.960 0.992 0.818 nodes has small impact, which is also demonstrated in the
20 0.994 0.968 0.818 lower AUC standard deviation. Note that the limited tragin

M"i%?a”n g:g% 8:3;2 g:gig sample cause problem for the performance of the supervised

St Dev. 0.027 0.013 - MLP for large hidden layers, which is overcome in the case

of the semi-supervised approach. Robustness to settirays is
key advantage for any automatic implementation, which the

) ) ) - . proposed semi-supervised method possess.

outliers as a ratio of all true and wrongly identified outier The results in table | consider all 2771 davs in the sample
OR can be between zero and 100% and in the first case it ) 0 y | 3’ ¢ p'e.
is interpreted as no success in detecting outliers, whilst put Odeh'(.:Ih r?nly zf'3/° are ou; |ehrs. n order to ass;ezs n
the second it is interpreted as complete success in acwratrﬁnecireitinetzné Igbzlﬁ;o;n;?rr;i?ino otu'ﬁ icﬂon:jget;nvg\jler?net ods 1n
identifying all outliers in the sample. The difference beem the resu?ts in table Ilgthat conte?ins t?]le %utli)t{-)r Rate petcen
this metric and sensitivity is that this one penalizes tlseiite The OR intuitively is the number of dlassifiers ovrt)ar.all
for false negatives, or in this context for incorrectly lbduk

normal seasonal vectors. True positives and negatives W%@jig?g glrjt;'i?rzsIanc((j)r?:gg]a:jgzzfe;hghtﬁgsrgﬁ%aezsged as
identified by manual exploration of the original data. umber, of detegt)éd and uzdetected correctly or not m:fllie
Last but not least, for any automatic implementation it i ' y '

important to assess the robustness of a method to differ nrtle table has identical structure to table | that we disalisse

settings. We will focus on both aspects of accuracy (AU efore.

and OR) and robustness in the presentation of the results. The differences between the models are now more appar-
ent. In agreement with the previous results, we can see that

IV. RESULTS the unsupervised approach is inferior, achieving@R of

The results for AUC for all experiments are presentednly 15.8%. It is useful to stress that given the small number
in table I. The first column provides the results for theof outliers we could not anticipate good performance of k-
supervised network, the second for the semi-supervised omeans, however this is not due to failings of the method, or
and the third for the unsupervised k-means clustering. Eadis application, but rather due to the problem’s charasties.
row shows the result for a different number of hidden node#\s expected in the light of the previous results, the first
Mean, median and standard deviation summary statistics dheee rows for low number of hidden nodes are identical
provided at the end of the table. The results for k-meansetween the supervised and the semi-supervised models.
are just replicated across the rows and therefore no stnd&towever, consideringDR we can observe that in all but
deviation is provided, as it is not meaningful. one of the remaining cases the semi-supervised network

We can observe that the unsupervised results are inferi@beled the outlying days more accurately. For= 5 the
to either supervised or semi-supervised, on average bytabsupervised MLP is better by 1.5%®R. Consulting the sum-
0.15. Comparing between the networks we can see thamary statistics we can see that the semi-supervised method
for small number of hidden nodesd( < 3) the semi- is better by about 8%0OR overall and has significantly
supervised approach does not offer any advantages, resultiower standard deviation. Again, we conclude that the semi-
in the same AUC. Thereafter, in 12 cases the semi-supervissapervised neural network is insensitive to the number of
classifier outperforms the supervised one, while on 5 casdsdden nodes, however we can see that the relative differenc
H = {5,7,9,14,20}, the supervised performs best. Bothfrom the supervised MLP is higher for larger hidden layers.
mean and median performance favors the semi-superviség highlight the results folf = 15 that the supervised MLP,



TABLE I Semi-supervised neural network with 10 nodes

OUTLIER RATE (OR) % RESULTS BY METHOD. 110 ?m reféssessnng Iabe,'ng Cor"ﬁdencf
100} Py (100%) OR = 83.10%
Hidden Supervised  Semi-supervised  Unsupervised Py (90%) ()R —90.91%
Nodes H) Learning Learning Learning o1 80%) OR = 89.71%
1 94.030 94.030 15.842 80 Py (70%) OR = 90.91%
2 95.455 95.455 15.842 s | . o
3 89.394 89.394 15.842 g ;Z Py (60%) OR = 89.39%
4 92.188 93.750 15.842 ] [ Py (50%) 2.42%
5 90.909 89.394 15.842 > sol o 40/ 80% 82%, 1o
6 81.081 92.308 15.842 %
7 92537 93.750 15.842 For
8 86.301 87.143 15.842 301 Py (20%) OR = 9%
9 87.324 93.939 15.842 ol Fatdil) 6r = 02197
10 79.730 92.424 15.842
11 92.188 93.651 15.842 10
12 81.818 87.500 15.842 0 . . .
13 86.765 95.313 15.842 1 2 3 4 5 6 7 8 9 10
14 80.769 92.188 15.842 Training lteration
15 31.980 80.769 15.842
16 85.714 92.063 15.842 Fig. 8. Training behaviour of semi-supervised network with Hidden
17 80.952 92.063 15.842 nodes for differentPy. The network is not allowed to re-assess labeling
18 82.813 93.651 15.842 confidence of instances in the training set.
19 92.063 96.875 15.842
20 74.118 93.651 15.842 Semi-supervised neural network with 10 nodes
Mean 83.906 91.966 15.842 re—-assessing labeling confidence
Median 86.533 93.038 15.842 110 i i i i i i i
St Dev. 13.502 3.647 - 100} P4(100%) OR = 83.10%

Py (90%) OR = 90.91%

Py (80%) OR = 89.71%

Py (70%) OR = 90.91%

(60%) OR = 89.39%

Py (50%) OR = 92.42%

0 (40%) OR = 92.42%

Py (30%) OR = 92.42%

Py (20%) OR = 89.39%

Py(10%) OR = 92.19%]

90+
80r
7071

which is also the initial classifier for the semi-supervised %

network, has anDR=32% that is improved through self-
training by the semi-supervised model to 81%.

50
40+

Training Sample %

30
We found minimal differences in the results of the semi-

supervised model if we allowed it to re-assess the labeling
confidence of all seasonal vectors or not, as discussed in -
section Il. Selecting different percentiles f& had impact . Tramsmg L R

on the rate that observations entered the training set aad fin

number of observations considered, but had small impact 9. Training behaviour of semi-supervised network with Hidden

the quality of the final classifier. Figure 8 provides exaraplenodes for differentPy. The network is allowed to re-assess labeling
for a network with 10 hidden nodes. The algorithm is rurgonfidence of instances in the training set.

for different percentilesPy, given in brackets; for example

Py (20%) is the 20% percentile. The number of training

iterations are marked on the horizontal axes and the vertica V. CONCLUSIONS

axis the percent of the total available sample used foritrgin ~ In this paper we presented a semi-supervised neural net-
at each iteration. The final training point for eaé¢ly is work algorithm to detect and identify unusual load profiles
circled and its respectiv®R is provided. We can see thatin hourly electricity load time series. The key advantage of
in most cases four to five training iterations were requirethe proposed method is that it does not need a large sample
and the final training samples between percentiles diffef labeled data that may be challenging and costly to collect
substantially. On the other hand, disregardiRg(100%), due to the nature of the time series. We used the Area Under
the maximum difference ifOR is only 3%. The network the Curve AUC) to assess the overall accuracy and defined
that usesPy (100%) learns new labels too fast, which resultsa metric targeted at measuring outlier detection, the @wtli

in low performance. The relevant supervised MO is  Rate (OR) and showed empirically that the algorithm, in
79.7% as we can see in table Il. Figure 8 provides result®mparison to conventional supervised and unsupervised
for networks that do not re-assess the labeling confidence afproaches, performs consistently more accurate andtrobus
observation that are already in the training sample. FiQurefor several design parameters, such as the number of hidden
shows the same simulations for networks that re-assess thadesH, the training sample selection threshdtg and the
labeling confidence and can add as well as remove instanaissign decision of whether to reevaluate the output labels
from the training sample. While the resultir@R for all  of the algorithm from the previous training iterations ot.no
cases is identical, the training sample profiles are substaWe showed that robustness was achieved through the semi-
tially different, resulting overall in lower sample usage.  supervised learning scheme, rather than as a property of




the MLPs. The robustness to design parameters is crucigd]
for applications that have a few labeled cases and therefore
semi-supervised methods are used, since in practice we¢ don’
have many labeled cases to evaluate their performance, Alsp]
we proposed a heuristic to populate the initial sample of
labels with additional cases of normal seasonal vectous, th
reducing further the required number of labels. We founds]
that the heuristic was producing useful labels as they were
retained in the final training set, even when the algorithm[G]
was allowed to remove them.

The objective of the proposed method is twofold. From
one hand is to provide a dedicated monitoring tool for,
electricity load time series, which is commonly overlooked
in research and practice alike. In several cases, tools fron§l
conventional low frequency time series exploration are ap-
plied to electricity load, although they are not designed9]
to deal with high frequency time series and can provide
erroneous results. Its second purpose is to aid in timesserig,
forecasting. Unusual load profiles are commonly excluded
from modeling an electricity load time series and are eithdtll
replaced by a normal profile day or removed altogetheﬁz]
Even if a forecasting method allows for special treatment
of the outliers, one has to be able to detect them fast and
reliably as new data become available. The advantage ﬁg]
the proposed algorithm is that it can both provide suc
information and also learn from useful new cases to imprové?
its discriminatory power. Although in this study we used
MLPs at the core of the algorithm due to their properties,
other algorithms with similar learning capabilities, suah [15]
Support Vector Machines, can be explored.

The superior performance comes at the cost of additiongk)
complexity and computational cost. An important question
that needs to be addressed is when the semi-superviéleﬂ
approach is required. The key decision variable is the -avajls]
ability and the cost of labeled cases to form the initialrirag
set. Electricity load time series typically involve veryde
samples, which are difficult to manipulate and explore, mak-
ing manual labeling time consuming and costly. Moreovef®]
these time series exhibit particular problems, such asgtayl
saving, leap years, multiple overlaying seasonalities,that
increase the complexity and the difficulty of manual analysi
further. [20]

Next steps in this research are to explore in detail the
relation of the parametey, used to initialize the labeled
training sample, with the performance of the method, e
well as explore the interactions and possible heuristics fo
choosing the remaining design parameters. The ultimal&l
evaluation of the value of this algorithm is its impact on
forecasting accuracy and decision making; therefore, &e pl[23]
to integrate this into a forecasting model and measurettijrec

its impact to forecasting accuracy. [24]
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