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Abstract

Forecasting plays a crucial role in decision making and accurate forecasts
can bring important benefits for organizations. Human judgement is a sig-
nificant element when preparing these forecasts. Judgemental forecasts made
by experts may influence accuracy, since experts can incorporate information
difficult to structure and include in statistical models. Typically, such judge-
mental forecasts may enhance the accuracy under certain circumstances, al-
though they are biased given the nature of human behaviour. Although
researchers has been actively looking into possible causes of human bias,
there has been limited research devoted to empirically measuring it, to the
extent that conclusions can be totally divergent depending on the error met-
ric chosen. Furthermore, most of the error metrics are focused on quantifying
the magnitude of the error, where the bias measure has remained relatively
overlooked. Therefore, in order to assess human behaviour and performance,
an error metric able to measure both the magnitude and bias of the error
should be designed. This paper presents a novel metric that overcomes the
aforementioned limitations by using an innovative application of the com-
plex numbers theory. The methodology is successfully applied to analyse
the judgemental forecasts of a household products manufacturer. This new
point of view is also utilized to revisit related problems as the mechanistic
integration of judgemental forecasts and the bias-accuracy trade-off.
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1. Introduction

Forecasting is of paramount importance to decision making for organi-
sations. For example, in the context of supply chain management accurate
forecasts can affect positively the operational management of companies,
leading to enhanced customer satisfaction, lower inventory investment and
reduced product obsolescence; among other advantages (Moon et al., 2003;
Trapero et al., 2012). Such forecasts are often the result of the integration
of statistical forecasting with managerial judgement from the forecasters in
the organisation. The behaviour of the latter is crucial for the overall per-
formance of the forecasting process.

When those forecasts are computed at the Stock Keeping Unit (SKU)
level, a particular type of Decision Support System, known as a Forecasting
Support System (FSS) is commonly employed (Fildes et al., 2006). A com-
plete FSS includes a statistical part and a judgemental part, allowing the
incorporation of human expertise in the forecasts. Usually, the statistical
part is based on univariate time series techniques that analyse past historical
data in order to extract a demand pattern that is then projected into the
future (Ord and Fildes, 2012). This is often implemented using exponen-
tial smoothing methods, due to their relatively good performance, reliability
and transparency (Gardner, 2006; Hyndman et al., 2008). Furthermore, such
forecasting methods are well-suited to companies that handle numerous fore-
casts and require some automation.

The statistical part of a FSS is complimented by human judgement to
overcome limitations of statistical algorithms. Human judgement is involved
in different ways in the forecasting process (Lawrence et al., 2006). Firstly,
human judgement is applied in the preliminary time series exploration, where
the human expert is trying to identify patterns in a time series in order to
select an appropriate statistical method (Harvey, 2007). In some cases model
parameters may be selected judgementally, as is often the case in intermit-
tent demand forecasting (Kourentzes, 2014). It is also employed to directly
modify the quantity being forecast when the FSS statistical models do not
include potentially relevant information (Fildes et al., 2009). In other cases,
forecasts are entirely based on human judgement, something that is com-
mon for instance with analysts predictions for financial markets (Bozos and



Nikolopoulos, 2011). The use of judgemental forecasting in different organi-
zations has been analysed by Sanders and Manrodt (2003), who investigated
240 U.S. corporations and found that 30.3% of them mainly used judge-
mental methods and 41% employed both quantitative and judgemental met-
hods. Regarding more disaggregated case studies at SKU level Franses and
Legerstee (2009) analysed a multinational pharmaceutical company where
about 89.5% of all cases were adjusted by experts and Trapero et al. (2011)
investigated a chemical company specialized in household products where
65% of SKUs were also judgementally adjusted. The reasons behind such
adjustments were explored by Fildes and Goodwin (2007), who identified
promotional and advertising activity as the main drivers.

Since judgemental forecasting is based on human inputs, such decisions
are subject to heuristics and biases that suggest their behaviour should be
analysed (Haméldinen et al., 2013). Mello (2009) analyses the biases intro-
duced by means of forecast game playing, defined as the intentional manip-
ulation of forecasting processes to gain personal, group, or corporate advan-
tage. Eroglu and Croxton (2010) explore the effects of particular individual
differences and suggest that a forecaster’s personality and motivational ori-
entation significantly influence the forecasting biases. Kremer et al. (2011)
conclude that forecasters overreact to forecast errors in relatively stable en-
vironments, but underreact to errors in relatively less stable environments.
These findings build on research by psychologists on human behaviour, where
several biases have been recognised that are applicable to forecasting such
as: anchoring, availability, over-optimism, recency and underestimation of
uncertainty (Fildes et al., 2009; Kahneman, 2011; Petropoulos et al., 2014).
Other aspects of judgement biases are associated with ‘wishful thinking’ re-
lated to the success of activities that a manager is personally involved or
responsible for.

Apart from behavioural aspects, forecasters’ bias has also been studied
by analysing the direction and magnitude of the judgemental adjustments
(Fildes et al., 2009; Trapero et al., 2011, 2013). Recent literature suggests
the existence of a bias towards making overly positive adjustments, i.e. to
increase the forecast value provided by the statistical baseline forecast (Fildes
et al., 2009). Trapero et al. (2013) analysed the forecasting performance of
judgemental forecasting in the presence of promotions, being one of the main
reasons to judgementally adjust forecasts, and concluded that experts may
improve the forecasting accuracy but not systematically. In particular the
direction and size of adjustment were found to affect the accuracy of the

3



adjustments, highlighting the importance of exploring expert behaviour for
different situations and bias preferences.

In the literature different mechanistic models have been proposed to
counter such forecasting biases. Blattberg and Hoch (1990) proposed to
equally weight the statistical and judgemental forecast. Fildes et al. (2009)
provided a linear optimal model, where the weight associated to each part
were optimized based on past information. Trapero et al. (2011) investigated
potential nonlinearities associated with those weights, while Trapero et al.
(2013) proposed a hybrid model to combine expert and statistical forecasts
depending on the size of the judgemental adjustment.

Although most of the literature agrees with the fact that experts to a cer-
tain extent improve forecasting accuracy, the results are inconclusive (Kremer
et al., 2011). One of the main causes is due to the utilized forecast error met-
rics (Davydenko and Fildes, 2013). In fact, some studies arrived at different
conclusions depending on the error metric chosen. For instance Fildes et al.
(2009) and Trapero et al. (2011) presented case studies where the adjust-
ments improved the forecasting accuracy when Median Absolute Percentage
Error (MdAPE) was used, while the opposite conclusion was reached, i.e.
the adjustments reduced the forecasting accuracy, if the Mean Absolute Per-
centage Error (MAPE) was used. In order to overcome these problems with
traditional error metrics Hyndman and Koehler (2006) proposed the Mean
Absolute Scaled Error (MASE), which is a relative error measure based on the
ratio given by the proposed technique’s Mean Absolute Error (MAE) divided
by the benchmark forecasting method MAE. Recently, Davydenko and Fildes
(2013) refined the MASE and proposed the Average Relative MAE (AvgRel-
MAE), where the arithmetic means were replaced by geometric means. The
latter measure was applied to a supply chain dataset, where the benchmark
was the statistical baseline forecast with respect to the judgementally ad-
justed forecast.

Nevertheless, both the MASE and the AvgReIMAE assess the error mag-
nitude, whereas how to best measure the forecast bias is overlooked in the
literature. Since the bias error is a key variable to understand the behavioural
aspects of adjustments (Trapero et al., 2013), other error measures are re-
quired. In this work, we propose a novel error metric that is capable of
providing measures of both error magnitude and bias at the same time. In
particular, the new metric relies on the properties of complex numbers to
yield a set of metrics and graphs that facilitate the understanding and rep-
resentation of the experts’ forecasting behaviour and performance.
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The rest of the paper is organised as follows: section 2 discusses the
limitations of existing bias metrics and introduces the proposed one; section 3
introduces a company case study and demonstrates the use of the new metric,
followed by section 4 that demonstrates some of its modelling benefits. The
paper concludes with remarks on the new metric and further research.

2. Measuring forecasting bias

2.1. Emisting metrics and limitations

To better illustrate the construction and advantages of the new met-
ric let us assume that we have collected forecast errors from three experts:
E4=(-5,46,-2), Eg = (—6,+50,—50) and E¢ = (+13,+2,—3). We can
measure the type and size of their bias by calculating the Mean Error (ME)
as ME =n~! Z?Zl ej, where n is the number of errors e;, for each expert.
This results in M Ep, = —0.33, MEg, = —2.00 and M Eg, = 4.00 for each
expert respectively. The mean errors describe the positive or negative bias
of the experts, as well as the magnitude, and assuming that the errors are of
the same scale we can rank their performance in terms of bias.

At closer inspection we can observe that there are three issues with this
calculation. First, the size of errors is lost. In our example, expert Ep makes
the largest forecast errors, yet the resulting M Ep, is smaller than expert
E¢ who has made much smaller forecast errors. Note that we operate under
the assumption that all errors are of the same scale and units, therefore the
predictions of expert E5 are indeed the least accurate. To illustrate the point
further, any expert could achieve a zero bias by simply making an adjustment
that would incur high error yet cancel out any previous bias, resulting in a
ME of zero. A second issue, is that if we calculate the mean bias of all
experts it is impossible to decompose back to the performance of individual
experts, or appreciate how large errors are cancelled out, resulting in small
apparent biases. The next issue is associated with the interpretability of the
bias measurement: ME does not provide an insight whether the bias of the
experts is high or low. Scale independent variations of ME have attempted
to address this issue. It is common to either normalise the errors before ME
is calculated, thus adjusting the scale of errors, or to use either the Mean
Percentage Error (MPE) or the scaled Mean Error (sME). The latter two are
calculated as follows:
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where y; are the actual observations at period j and m is the fitting sample
size and n the number of errors considered in the metric.

The MPE expresses the bias as a percentage, therefore is scale indepen-
dent and easy to interpret. Although this helps convey better the size of the
bias it has a number of limitations. MPE does not have an upper bound,
therefore it still offers limited insight in terms of how large or small a bias
is. Furthermore, its measurement is biased as negative and positive errors do
not contribute equally. The following example illustrates this: let us assume
that the forecast for a period is 90, while the observed demand is 100. The
error, measured as the difference between actual and forecasted values will
be 10 and the MPE = 10%. If on the other hand the forecast was 100 and the
demand was 90 the error would be -10, but the MPE = -11.1%, even though
the bias is actually of the same size. The overall MPE over the two cases
would imply an average negative bias, where in fact there the negative and
positive errors are equal and therefore there should be no bias. Furthermore,
should the observed value be zero for a period, MPE cannot be meaningfully
calculated.

The sME is the ME scaled by the mean of the observed actuals. That
avoids many of the problems of MPE, but assumes that the time series for
which the bias is measured is stationary and still does not have an upper
bound, thus complicating its interpretation. In addition, for time series that
the mean of the observed actuals is zero, or very close to zero, the calculation
of sME becomes problematic. Other variations of ME exist, with similar
limitations.

2.2. A new metric based on complex numbers

To overcome these limitations we will introduce a new class of bias met-
rics. Given errors e; = y; — f;, where y; is the observed value and f; the
forecasted value for period j, instead of using the raw errors we can calculate
their square root:



Since errors can be negative z; can be a real or imaginary number and i is
the imaginary unit that satisfies the equation i* = —1. In Eq. (3) a is the
real part and b is the imaginary part of the complex number. For positive
errors a = /e and b = 0, while for negative a = 0 and b = \/ﬁ . We name
this Root Error (RE). Using this we can define the Sum Root Error (SRE)
and Mean Root Error (MRE) to summarise across several errors:

SRE=Y \&5=> a;+i) b, (4)
j=1 Jj=1 Jj=1
1 1 & i —

MRE = =SRE = = =) b 5
n n;&]+n; j (5)

Note that Egs. (4) and (5) are relatively robust to outliers as their impact
is reduced due to the square root. The resulting mean root errors for the
three experts are: MREp, = 0.82 4+ 1.22:, MREg, = 2.36 + 3.17¢ and
MREg, = 1.67+0.58:. For the first two experts the real part of the complex
number is smaller than the imaginary part, implying that the negative errors
are larger and therefore the existence of a negative bias. The opposite is true
for the third expert. The results agree with ME with respect to the direction
of the bias. If both real and imaginary parts are equal then the forecasts are
unbiased. Note however that for M REg, both a and b parts are larger than
those of other experts, implying that this MRE is the result of larger errors
and this expert is less accurate than either £4 or Ec.

Fig. 1 illustrates the differences between the representations of conven-
tional bias and bias using complex errors. In Fig. la any errors on the
diagonal line have equal real (positive) and imaginary (negative) errors and
are unbiased. Any complex errors on the left side of the diagonal exhibit
negative bias, while the opposite is true for errors on the right side of the
diagonal. Expert B is closer to the diagonal in comparison to Expert A,
therefore is less biased. However, in contrast to ME results, illustrated in
Fig. 1b, the magnitude of the complex error for Expert B is much larger in
comparison to the other experts, revealing the high errors that are cancelled
out in the case of ME. This example illustrates that the root error does not
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Figure 1: Complex and conventional representation of bias.

uncouple bias and accuracy, overcoming one of the limitations of conventional
bias metrics.

We can take advantage of the complex nature of the errors to simplify
their interpretation by expressing them in their polar form. In this case we
can separate a complex number to its magnitude r and angle 7, the latter
also known as argument or phase:



r=va 4+, (6)
arctan(b/a), ifa >0

v =4 7/2, ifa=0and b>0 (7)
0, ifa=0and b=0,

where 7 is expressed in radians and arctan is the inverse tangent. Note
that usually the angle of a complex number is calculated with +27k, but in
the context of complex error we can set & = 0 as other values do not add
any valuable information. The connection between the representation of the
complex error in the complex plane and its polar form is illustrated in Fig.
2.
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Figure 2: An example of a complex error and its polar form (v,r).

For the three experts of our example rg, = 1.47, rg, = 3.95 and rg, =
1.77 with vg, = 0.317, vg, = 0.307 and 7vg. = 0.11w. The magnitudes
r, which capture the error size, demonstrate again that this information is
retained, in contrast to ME. The angle v reveals the direction and size of
bias, irrespective of the magnitude r of the error. By definition it is bounded
between [0, 7/2], as e; € R. Unbiasedness will result when v = 7/4, i.e. when
a = b. Therefore, since vg,, Vg, > 7/4 both experts are negatively biased,
while the third one is positively biased. Up until now we have not been able
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to fully describe whether the bias of an expert is large or not as there was no
maximum bound on the value of ME and its variants. However, for complex
errors 7y is bounded, allowing to do precisely that. We can express the bias
as the difference from the unbiased state, resulting in a value between -1
(maximum negative bias) up to 1 (maximum positive bias), with 0 being the
unbiased result. We define the Bias Coefficient k as:

Ay

/ﬁzl—?. (8)

The bias coefficient is a unit-free metric. For the experts of our example:
kg, = —0.25, kg, = —0.19 and kg, = 0.58. A forecast that is always over
the observed values will have a Kk = —1, always over-forecasting, while k = 1
for the opposite case. Note that since the bias coefficient x is both unit free
and bounded it makes it easy to characterise the bias of experts, either for a
single expert, or relatively to others. Crucially the size of the bias coefficient
has a clear interpretation that existing bias metrics lack.

Using complex errors permits to easily decompose and aggregate the be-
haviour of forecasters in terms of bias and error, using the addition and
subtraction of complex numbers. Fig. 3 visualises this. Given the forecast-
ing behaviour of two (or more) experts we can aggregate their behaviour
to the overall organisational behaviour. Alternatively, given the organisa-
tional behaviour and of some experts, we can infer the individual behaviour
by subtracting from the overall, both in terms of bias direction and size, as
well as error magnitude. This overcomes the third limitation of ME and its
variants, which do not provide transparency how each individual behaviour
contributes to the overall behaviour.

2.3. Connection with traditional error metrics

So far the discussion has been mostly focused on the bias aspect of the
new metric. Here we discuss its magnitude characteristics. Sometimes it is
required to provide the error metric in the same units of the actual values.
In this sense, we can compute the Squared Mean Root Error (SMRE):

SMRE = <M> : (9)

n

so as to retain the units of the metric equal to the observed and forecasted
values. The SMRE is a complex number with the main difference to the
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Figure 3: An example of a complex number sum and mean.

well-known Root Mean Squared Error (RMSE) being that the root error is
computed first and then the result is squared to return the metric to the
original units. Note that, in contrast to RMSE, since we first compute root
of the error we retain the information about its sign.

To directly connect the complex metric with conventional ones we can
use the Geometric Root Mean Squared Error (GRMSE). This metric has
favourable statistical properties being robust to outliers and able to deal
with aggregating forecast errors across time series of different scales when
comparing the accuracy of alternative forecast sources (Fildes, 1992). The

GRMSE is defined as:

GRMSE = (H eg) . (10)
j=1

Calculating the geometric mean of SMRE we construct the Geometric Squared
Mean Root Error (GSMRE), which is the complex version of GRMSE:

GSMRE = (ﬁ @) (11)

The following properties are true: i) |GSMRE| = GRMSE, i.e. the magni-
tude of the complex number GSMRE is equal to the value of the conventional
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GRMSE and thus, it provides exactly the same information about the error
magnitude and a direct translation of the complex error to conventional ones;
ii) Unlike the GRMSE, the GSMRE also offers information about the bias.
Particularly, the angle of the GSMRE indicates the proportion of positive or
negative errors in the whole sample. It should be noted that the bias bounds
found in the previous section for the MRE [0,7/2] will be scaled to [0,7] due
to the square operation.

To illustrate further the benefits of the proposed complex errors in cap-
turing the behaviour of forecasters we use a case study introduced in the
next section.

3. Case study

Data collected from a manufacturing company specialising in household
products will be used to demonstrate how the root error captures the fore-
casting behaviour and the insights it offer. The dataset contains historical
sales and final forecasts. The final forecasts are produced by human experts
adjusting statistical baseline forecasts. The difference between the histor-
ical sales and the final forecasts highlight the behaviour of the forecasters
in terms of forecasting preferences, which are an amalgam of individual and
company level targets, biases and information availability. The forecasters
draw upon information from sales, marketing and production personnel to
adjust the baseline forecasts to the final values that are eventually used to
base decisions made by the company.

The dataset contains weekly forecasts for 156 products. In total 18,096
forecasts are available, resulting in an average of 116 records per product.
In this study we will treat each product separately. We do this since the
available external information used to adjust the forecasts is often relevant
at a product-by-product level and the company does not treat all products
equally in terms of importance and expectations.

The sales of different products are on different scale. To avoid using
percentage metrics, for the reasons highlighted before, all data are normalised
by dividing the sales and the final forecasts by the standard deviation of the
sales of each respective product. Each error is now scale and units free
and can be used to calculate meaningful statistics across products. This
normalisation has been done previously in similar studies (Fildes et al., 2009;
Trapero et al., 2011, 2013).
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An initial description of the dataset is provided in Table 1. The overall
forecast bias as measured by Mean Error (ME) is -0.0623. This clearly shows
that there is a negative bias, i.e. on average the company experts are over-
forecasting. However, given that it is scaled by the standard deviation of
the sales of each respective product, it is difficult to appreciate whether
it is a small or a large bias. The Mean Absolute Error (MAE) measures
the accuracy of the final forecasts. Again, due to scaling, it is difficult to
appreciate whether this is a large or small error. Next, their percentage
equivalent metrics are provided. The Mean Percentage Error (MPE) agrees
with the ME that there is a negative overall bias, with a size of 36.34%. The
Mean Absolute Percentage Error (MAPE) places the magnitude of the errors
at 60.61%. Note that the percentage metrics in both cases are misleading in
the sense, that an error of 100% is not the maximum and they are biased.

Table 1: Descriptive statistics of the case data

Metric Value

ME -0.0623
MAE 0.7934
MPE % -36.34%
MAPE % 60.61%
MRE 0.3635 +0.4337i1
Bias coefficient -11.19%
GRMSE 0.5839

Finally, in Table 1 the Mean Root Error (MRE) is provided, with a value
of 0.36 + 0.43i. This tells us that the imaginary part that corresponds to
negative errors is larger than the real part that corresponds to positive er-
rors, thus overall the forecasts are negatively biased. The bias coefficient x
is provided, which is found to be -11.19%. Note that as x is bounded up to
+100% we can describe the overall observed forecast bias as small. To illus-
trate the measurement bias introduced in MPE due to the division by sales,
if we were to calculate the bias coefficient on percentage errors the resulting
x would be -37.66%, substantially different from its unbiased counterpart.
The magnitude r of MRE is 0.57, which when considered only on its own
merely provides a measurement of the size of the errors included in the bias
calculation. The GRMSE is found to be 0.5839, which as discussed before
can be calculated either from the complex errors of the various products of
the case company, or conventionally from the errors of the forecasts.
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Fig. 4 presents histograms of the forecast bias per product as measured
using ME and the bias coefficient x. In both histograms the vertical thick
line represents the unbiased forecasting behaviour, while the dotted line rep-
resents the overall company bias. As discussed above the ME histogram is
not bounded. Therefore, products that their forecasts are highly biased ap-
pear as outliers, distorting the distribution. In the case of the bias coefficient
histogram all measurements are within [-1, 1], resulting in an easier to de-
scribe distribution and revealing in more detail how the forecast bias of the
various products differ, as any outliers are bounded.
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(a) ME bias per product. (b) Bias coefficient per product.

Figure 4: Histograms of forecast bias per product as measured by ME and the bias coef-
ficient.

We can summarise the information contained in Fig. 4b with a box-
plot, as in Fig. 5, which captures the distribution of the bias coefficient
of the products. The unbiased behaviour is again represented by a vertical
thick line. Given the bounded nature of x we describe cases with |x| > 0.5
as strongly biased and the rest as weakly biased, providing a simple and
intuitive description of the forecast bias behaviour. Note that this character-
isation of bias is not dataset dependent and can be used to easily compare
and benchmark behaviours of different experts and companies. The non-
symmetric forecast bias behaviour of the case company is apparent. We can
clearly see that most products (about 50%) exhibit negative weak bias and
about a quarter of the products having strong negative bias. The 3" quantile
of the bias coefficient shows mostly weak negative and unbiased forecasting
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behaviour, while the remaining 25% of the products exhibits positive bias
of increasing strength. A number of products with outlying behaviour have
very strong positive biases, which influence the overall company bias, making
it appear less biased. This becomes apparent when we consider the median
bias coefficient, as illustrated in Fig. 5.

Négative bi.‘as P‘ositive biés
Over-forecasting Under-forecasting
1 % ———————————————— * * K K W
Strong bias (=) Weak bias (=) Weak bias (+), Strong bias (+)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Bias coefficient k

Figure 5: Bias coefficient boxplot. The mean bias coefficient is represented by a (e).

Both Figs. 4b and 5 are constructed to provide a clear view of the forecast
bias behaviour at an overall company level and at a product level, disregard-
ing the magnitude of the errors that is captured by the root error, so as
to provide a comparison with the existing conventional bias metrics. How-
ever, the additional information contained in the complex errors can provide
interesting insights. We propose a new plot to visualise the richness of infor-
mation contained in this metric. Fig 6 illustrates the proposed ‘Bias plot’.
This plot is based on the polar coordinates of complex errors, using the error
magnitude r and its angle v that is expressed in radians. Forecasts errors
can only result in complex numbers with 0 < v < 7/2, hence the plot is
bounded accordingly. The correspondence between the bias coefficient x and
angle ~y is highlighted. This visualisation demonstrates that since the value
of k depends solely on v, as in Eq. (8), it is correctly interpreted as having a
linear scale in Figs 4b and 5. The vertical line represents the unbiased case,
while any values on the left are negatively biased and any values on the right
positively biased. The further a point is from the origin of the axes the larger
is the magnitude of the error r.

The MRE of each product is plotted, as well as the MRE that represents
the average overall company behaviour. Observe that since we are deal-
ing with complex numbers, the company’s behaviour can be geometrically
constructed from the forecasters’ behaviour for each individual product and
vice-versa, as in Fig. 3. We can observe that the majority of products have
a negative bias with relatively small but similar associated errors. A smaller
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Figure 6: Forecast bias plot.

number of positively biased products can be seen, in agreement with the ex-
ploration in Fig. 5. With the bias plot it is evident that these highly biased
products are also associated with higher than average errors. Therefore, this
plot permits to easily characterise the forecasting behaviour of both individ-
ual products and overall, in terms of bias and errors. Note that following
Eq. (10) the geometric mean of the squared magnitudes of the individual
products will result in the GRMSE of the company, presented in Table 1.

4. Applications of MRE

.1. Describing the impact of experts’ bias on accurac
g p P Y

In the literature a question that has been raised is whether we can de-
scribe the connection between bias of experts and forecasting accuracy, with
the assumption that high biases in judgemental adjustments will lead to dis-
proportionately high forecast errors (Trapero et al., 2011). It is worthwhile
to explore whether complex errors can help us answer this question better.
To address this question we need a measure of bias and a measure of ac-
curacy. We have demonstrated so far that complex errors provide both, as
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captured by their magnitude r and angle ~, while avoiding the pitfalls of
conventional metrics. Fig. Ta provides a scatterplot of the bias direction and
size and the error magnitude. The company bias is highlighted and a 2
order polynomial fit is estimated on the data:

7 = 0.67737* — 1.1249v + 1.0096. (12)

The coefficient of determination of the polynomial is R? = 0.66. Observe
that while the polynomial captures part of the apparent nonlinear relation-
ship between bias and error, strongly biased observations are not modelled
adequately. Higher order polynomials are not used since they do not fit
better to the data, overfitting the weak bias region.
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(a) 2" order polynomial fit in angle-
error coordinates.

Figure 7: Forecast bias vs. error magnitude scatterplots with polynomial fits.
A modelling limitation of the polynomial in Eq. (12) is that we do not take
advantage of the connection between the magnitude and angle of complex

numbers. In Fig. 7b we fit a 2" order polynomial on the real and imaginary
part of the complex errors, which is subsequently projected on the scatterplot:

b = 0.4379a> — 0.0155a + 0.5465. (13)

This can be visualised by fitting the polynomial in the bias plot in Fig. 6.
Expressed in terms of angle and magnitude Eq. (13) becomes:
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7= \/cos (7)% + (0.4379cos(7)? — 0.0155¢c0s(7) + 0.5465)°. (14)

The resulting fit is superior with R? = 0.82, an increase of about 23% in
comparison to the fit of Eq. (12). It describes well both products with
weak and strong forecasting bias and correctly models the extreme values.
The polynomial fit, as seen in Eq. (13), does not need to resort to highly-
nonlinear models that are hard to identify, estimate and extract inference
from. Furthermore, the prediction interval of the polynomial can also be
projected, providing additional insight in the forecast behaviour of the case
company. We attempted to approximate the projected fit using angle-error
coordinates, as in Fig 7a, and polynomials up to 15" order, which were
all found to be inappropriate. Even if a fit were found to be adequate,
the complexity of the model would prohibit any useful inference. Using
complex errors the superior fit is feasible because we take advantage of the full
information encoded in the root error, which is not possible with conventional
metrics.

Note that the constant of both polynomials is positive, capturing a struc-
tural negative bias in the behaviour of the organisation of the case study.
However, in the case of Eq. (12) part of the nonlinearity that is not captured
by the polynomial is interpreted as bias, providing erroneous description
of the forecasting behaviour. Finally, it is easy to express the connection
between bias and error is terms of bias coefficient instead of v, using the
connection in Eq. (8).

Using the properties of proposed root error we are able to fit a low or-
der polynomial that fits well to the observed data and describes clearly and
accurately the forecasting behaviour of the case company. As was demon-
strated above, such a result is not possible if we do not consider the additional
properties of complex errors.

4.2. Limits of bias-accuracy improvements

The separation of bias and the error magnitude r that is done by the root
error is helpful in exploring whether it is possible to correct the bias without
affecting the magnitude of errors, i.e. the forecasting accuracy. An unbiased
behaviour results when v = 7 /4 or simply a = b. Let z be the resulting root
error of a biased forecast that we want to adjust, which has magnitude r,.
Let u be an unbiased error. Equal magnitudes are necessary if forecasting
accuracy is to stay the same, therefore the magnitude of u is set to be equal
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to r,. Let d be a forecast adjustment (positive or negative) that will result
in the desired unbiased result v and v = v/d. In terms of complex errors the
adjustment is u = z + v. Solving for v we find:

™

v=u—z=r, (cos (Z> +isin <%>) —a — bi. (15)

Separating the real and imaginary parts of the adjustment we get:

Re(v) = Va2 + b2cos <£> —a, (16)
Im(v) = Va2 + Psin (%) b (17)

Given that d € R, since it is a forecast adjustment, only one of the real
or imaginary parts of v can be non-zero. Therefore, if such an adjustment
exists:

coS (%) > \/GQ“W
sin(3) = 2 (18)
ab =0

These conditions cannot be met by any positive or negative adjustment of
size a? or —b? respectively. This proves that it is not possible to correct a
biased behaviour without accepting some additional forecast error. This is
analogous to the bias-variance trade-off and provides an intuitive proof using
complex errors.

5. Conclusions

In this paper we proposed a new error metric, which takes advantage of
the properties of complex numbers, to help us better describe the forecasting
behaviour of experts and organisations. We demonstrated its advantages
over conventional metrics using a case study.

The new metric is capable of capturing the forecast bias, overcoming lim-
itations of existing metrics, and the magnitude of the errors. Based on this
metric we introduced the bias coefficient s that is unit free and scale indepen-
dent, allowing to easily compare the forecasting behaviour between different
experts or organisations. Furthermore, because k is bounded between [-1,
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1] by construction, it allows us to characterise the measured bias, providing
an non-relative description of the forecasting behaviour as unbiased, weakly
or strongly biased. This is a property that existing bias metrics lack. The
error magnitude associated with complex errors can be summarised using
the geometric mean, resulting in the Geometric Squared Mean Root Error.
Interestingly, the magnitude of this metric matches with the Geometric Root
Mean Squared Error, which has been proposed in the literature as an accu-
racy metric with desirable properties (Fildes, 1992).

Error metrics, depending on the objective of their use, should have var-
ious qualities including robustness, interpretability and scale and unit inde-
pendence (Armstrong and Collopy, 1992). The proposed root error, and the
various metrics that we can construct from it, score favourably in these terms.
The root error due to the squared root used in its calculation is robust to the
effect of outliers, which can otherwise dominate error measure summaries for
a single or across multiple time series. The bias coefficient, which is based
on the root error, provides an intuitive and interpretable measure of bias.
This is also unit and scale free, which permits summarising across multiple
time series and benchmarking. The error magnitude as summarised by the
GSMRE has similar properties. To these we add the connection between bias
and accuracy that root error retains, while existing metrics do not, therefore
more clearly representing the holistic behaviour of forecasters. This can also
help us to understand how individual expert behaviours or choices in the
forecasting of individual items result in the overall organisational forecasting
behaviour.

Although the root error is based on complex number analysis, its calcu-
lation is relatively simple. We anticipate that in practice forecasters will not
report the root error directly, but rather the bias coefficient and the GSMRE.
We provided novel visualisations of the forecasting behaviour, capturing the
bias and error magnitude, in order to enhance the communication of the
results to experts, addressing a need indicated by Hémaél&inen et al. (2013).

We demonstrated that the proposed metric provides estimation bene-
fits when we try to model the effects of forecasting bias on accuracy. The
additional information contained in the complex errors permits capturing
complicated relationships without requiring highly-nonlinear models. This is
desirable both for the identification and estimation of the models, as well as
providing more transparent intelligence on the forecasting behaviour.

Further research should address the utilization of the complex error met-
rics for comparing forecasting approaches in different fields. Additionally,
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judgemental forecast observations coming from other industries should also
employed to consolidate the results presented here, in particular given the
scale free properties of the bias coefficient that allows drawing cross-industry
results and benchmarks.
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