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Abstract

Intermittent demand forecasting has been widely researched in the context of spare parts

management. However, it is becoming increasingly relevant to many other areas, such as

retailing, where at the very disaggregate level time series may be highly intermittent, but at

more aggregate levels are likely to exhibit trends and seasonal patterns. The vast majority

of intermittent demand forecasting methods are inappropriate for producing forecasts with

such features. We propose using temporal hierarchies to produce forecasts that demonstrate

these traits at the various aggregation levels, effectively informing the resulting intermit-

tent forecasts of these patterns that are identifiable only at higher levels. We conduct an

empirical evaluation on real data and demonstrate statistically significant gains for both

point and quantile forecasts.

Keywords: Forecasting, temporal aggregation, temporal hierarchies, forecast

combination, forecast reconciliation.

1. Introduction

Intermittent demand forecasting is a challenging problem that relates to many aspects

of supply chain (Bacchetti and Saccani, 2012), retailing (Fildes et al., 2019) and predictive

maintenance (Van der Auweraer et al., 2018), among other applications. A key character-

istic of intermittent demand is that it exhibits several periods of zero demand, therefore

being variable both in the demand size, alike conventional demand, but also in terms of

demand timing. Croston (1972) proposed a forecasting method to address this complexity

by modelling the demand size and interval as two separate entities and dealing with each
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variability independently. Since, there has been considerable research on alternative fore-

casting approaches (see, Teunter and Duncan, 2009; Bacchetti and Saccani, 2012; Van der

Auweraer et al., 2018).

Many of the subsequently proposed approaches are modifications of the original Croston

method or heavily inspired by it (for example, Syntetos and Boylan, 2005; Teunter et al.,

2011). Bootstrapping (for example, Willemain et al., 2004; Syntetos et al., 2015), machine

learning and neural networks (for example, Kourentzes, 2013; Nikolopoulos et al., 2016),

and model based approaches (Snyder et al., 2012; Svetunkov and Boylan, 2017) have also

been considered.

A common theme in most of these methods is that they extrapolate the local mean,

resulting in constant value forecasts. This has been shown to perform well in a wide

variety of empirical evaluations (see, Syntetos and Boylan, 2005; Teunter and Duncan,

2009; Kourentzes, 2014). However, it has some counter-intuitive implications. Consider

a retailing example, where we are interested in forecasting daily demand series. Many of

these series will be intermittent, as it is quite probable that many items at store level do

not exhibit any demand for some days (Fildes et al., 2019; Li and Lim, 2018). Should

we however consider demand in monthly time buckets, it is highly likely that the time

series display trend and/or seasonal components. Such components are ignored by the

intermittent demand methods. The typical constant value forecasts imply that there are

omitted sources of variability. Furthermore they force a disconnect between the disaggregate

and aggregate views of the time series.

There have been some attempts in the literature to incorporate trend (Altay et al., 2008)

and seasonality (Lindsey and Pavur, 2013) in intermittent demand forecasts. The first is

based on a modification of the linear trend exponential smoothing method by Wright (1986)

that was developed to deal with irregularly sampled data. Altay et al. (2008) argue that

this lends itself well for the intermittent demand case and show that it can be beneficial

in forecasting aircraft spare parts. They find that it provides more accurate results than

the bias corrected variant of Croston’s method by Syntetos and Boylan (2005). However,

the authors recognise that the evaluation suffers from limitations due to the selected error

metrics. The trend method can quickly lead to zero forecasts when it detects a downwards

trend. This coupled with the choice of absolute errors for the evaluation can be highly

problematic. In intermittent demand absolute errors favour zero forecasts even when this

makes limited operational sense (Teunter and Duncan, 2009; Kolassa, 2016).

Moreover, we argue that the main weakness of the proposed method is how the trend

itself is modelled. In highly intermittent data an identified negative trend can push forecasts

to zero, even when the product is still active in the market. The analogous argument holds

for a positive trend. Instead, we would expect a series to remain intermittent, rather
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than become zero or continuous, and any changes in the frequency of demand arrivals

to appear as a trend at a more aggregate level. Similarly, the seasonality modification

by Lindsey and Pavur (2013) is also somewhat unnatural for the intermittent demand

setting. The authors adapt Croston’s method with multiplicative seasonal indices. The

approach is based on the assumption that the seasonal shape has to be mirrored in the

most disaggregate view of the data. This means that the there is a canonicity to demand

with an implied seasonality, which is against the definition of intermittent demand. In

intermittent demand the uncertainty lies in both the demand size and interval. The Lindsey

and Pavur (2013) adaptation implies a connection between these, while Croston’s method

assumes independence. Finally, the provided empirical evidence is relatively weak as the

proposed modification is benchmarked only against exponential smoothing on simulated

data. We argue that in both cases forcing unobserved or unnatural components upon an

intermittent series is not necessary. A natural way for trend and/or seasonality to appear

in intermittent data is by increasing or decreasing the rate of demand arrivals that would

make such components apparent at more aggregate levels.

The use of temporal aggregation in intermittent demand modelling is not new.

Nikolopoulos et al. (2011) proposed the ADIDA methodology that relies on temporally

aggregating the time series to a less intermittent view, modelling and generating forecasts

there, and disaggregating these to the original data frequency. This was shown to be bene-

ficial, however the authors did not consider the issue of trend or seasonality. Furthermore,

this work left the open question of what is the best temporal aggregation level to model

at. Rostami-Tabar et al. (2013) explores this question further, but for continuous demand

data, leaving this unresolved for intermittent time series. Petropoulos and Kourentzes

(2015) attempt to avoid picking a single temporal aggregation level by adapting the multi-

ple temporal aggregation prediction algorithm (Kourentzes et al., 2014) to the intermittent

demand case, which uses multiple levels simultaneously. They find this to be beneficial in

terms of accuracy, but with relatively small gains. Similarly with previous research, they

did not consider the case of trending or seasonal time series, and assumed that single expo-

nential smoothing is adequate as the time series are aggregated and intermittence lessens.

Kourentzes et al. (2017) compared using a single temporal aggregation level to multiple

and found the latter to be be beneficial. They argue that it is generally very difficult to

identify an optimal level of aggregation when the underlying demand generating process is

unknown, while using multiple levels hedges the modelling risk.

Building on the findings in the literature, in this paper we rely on using multiple levels

of temporal aggregation to bring trend and seasonal information to the intermittent fore-

casts. We argue that such time series components are identifiable at aggregate levels, while

not so at the observed level where the series are highly intermittent. We use the frame-

3



work of temporal hierarchies (Athanasopoulos et al., 2017) to enforce coherence between

aggregate and intermittent forecasts. Coherence, in this context, is the requirement that

the sum of the dissagregate intermittent forecasts equals the respective aggregate forecast.

Therefore rather than modifying the forecast methods for intermittent series, we modify

the intermittent forecasts to reflect trend and seasonal components captured at aggregate

levels. We argue that constructing forecasting methods for intermittent data that directly

capture such time series components is very challenging. This is among the reasons that

there has been limited progress in developing forecasting models for intermittent demand

(Shenstone and Hyndman, 2005; Snyder et al., 2012).

Taking into account the nature of intermittent time series, we propose a particular way

to set the temporal hierarchies, as well as a correction for potentially negative forecasts that

may occur when coherence is enforced upon intermittent forecasts with low values. Using

a dataset of aircraft spare parts, we evaluate the proposed approach against an established

intermittent demand method and provide evidence of significant gains both in terms of

point and quantile forecasts, the latter being closely connected with the inventory decisions

that such forecasts support. The contributions of this paper are as follows: (i) we propose

the use of temporal hierarchies to elucidate structure in intermittent demand time series

that is otherwise very difficult to capture; (ii) we demonstrate how to modify the framework

to operate in the intermittent demand context and guarantee non-negative forecasts; and

(iii) we provide empirical evidence of the efficacy of temporal hierarchies for intermittent

time series.

The rest of the paper is organised as follows. Section 2 introduces forecasting with

temporal hierarchies, as well as the necessary considerations for dealing with intermittent

demand time series. Section 3 outlines the dataset used and the design of the empirical

evaluation. Building on the results presented in Section 4, we discuss our work in the wider

context of intermittent demand modelling and provide concluding remarks in Section 6.

2. Forecasting with temporal hierarchies

Forecasting with temporal hierarchies was introduced by Athanasopoulos et al. (2017).

In what follows we present a simplified exposition of the methodology. In order to keep it

simple and avoid complex notation required to capture all its intricacies we base the presen-

tation and discussion on an example of quarterly time series. In the empirical application

that follows the intermittent data are observed at the monthly frequency. We make refer-

ence to higher frequency examples where this is beneficial for the exposition. For further

details we refer the reader to the above reference. In the following subsections we define

the concept of temporal hierarchies and how these are used in forecasting. This is followed
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by considering the case were the resulting forecasts are negative for which we propose a

remedy.

2.1. Temporal hierarchies

Denote as b = (yQ1 , yQ2 , yQ3 , yQ4)′ the m = 4-dimensional vector of observations of

a quarterly time series y across four consecutive quarters. This is the highest frequency

the time series is observed at. These are represented by the nodes at the bottom-level of

the quarterly temporal hierarchy as shown in Figure 1. Using non-overlapping temporal

aggregation we construct all integer data frequencies up to the annual level. Specifically,

we construct semi-annual observations ySA1 and ySA2 and the annual observation yA repre-

sented by the nodes in the middle and the top-level of the temporal hierarchy, respectively.

For a monthly series the temporal hierarchy will consist of bi-monthly, quarterly, four-

monthly, semi-annual and annual levels of aggregation. We stop at the annual frequency,

as at that point higher frequency components of the time series, such as seasonality, are

already removed completely.

A

SA1

Q1 Q2

SA2

Q3 Q4

Figure 1: A temporal hierarchy for quarterly data. Q` with ` = 1, . . . , 4, denote quarters, SA` with ` = 1, 2,
semi-annual observations, and A the annual observation.

Stacking all observations of the temporal hierarchy in a n = 7-dimensional vector

y = (yA, ySA1 , ySA2 , yQ1 , yQ2 , yQ3 , yQ4)′, we can write

y = Sb,

where

S =


1 1 1 1

1 1 0 0

0 0 1 1

Im


has dimensions n×m and is referred to as the ‘summing’ matrix. Im is an m-dimensional

identity matrix. S is a map of the temporal hierarchy, where through linear summations
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of the observed time series, we can construct all levels of temporal aggregation up to the

annual level.

The process of temporal aggregation is implemented in a non-overlapping fashion across

the observed sample. Using the temporal hierarchy the time series of different frequencies,

corresponding to the various levels of aggregation, are generated. For the quarterly exam-

ple, we denote these as yi =
(
y
[4]
i ,y

[2]
i ,y

[1]
i

)′
, where k in the superscript [k] denotes the

aggregation level and reflects the number of observations aggregated to obtain the series,

and i is a temporal hierarchy index from 1 to bT/mc, where T is the observed sample size.

For simplicity of exposition i is used as a common index across all levels of aggregation. It

indicates all the observations within the temporal hierarchy, corresponding to the annual

observation y
[m]
i .

Note that non-overlapping temporal aggregation requires the total number of observa-

tions to be an exact multiple of m so that all observations fit within a temporal aggregation

structure or bucket. Starting the aggregation from t? = T − bT/mcm+ 1 will ensure that

any spare observations not fitting into an aggregation bucket are ignored at the beginning

rather than the end of the sample, always retaining the most recent information. Alterna-

tively, this can be thought of starting the temporal aggregation from the end of the sample

and going backwards.

2.2. Temporal Hierarchical Forecasting - THieF

The concept of THieF is one of forecast reconciliation. Through this the resulting

forecasts blend information from the various temporal aggregation levels giving THieF its

strength. It begins by first generating a set of forecast for each level of temporal aggregation

forming a complete temporal hierarchy of forecasts. These are commonly referred to as

‘base’ forecasts in a hierarchical forecasting context. For the quarterly series example we

denote these as ŷ} = (ŷ
[4]
} , ŷ

[2]
} , ŷ

[1]
} )′ where } specifies a common forecast index across the

temporal hierarchy reflecting the forecast horizon at the annual level. Note that if h is

the forecast horizon required for the observed bottom-level series, then } = 1, . . . , dh/me
at the annual level. For each in between level of the temporal hierarchy we generate

kdh/me-steps ahead forecasts. Although temporarily aggregated data are by construction

coherent, i.e., they add-up exactly across aggregation levels, in general base forecasts will

not be.

Forecast reconciliation of the base forecasts is achieved by

ỹ} = SGŷ},

where G maps the base forecasts into the bottom-level and S sums these up to a set

of coherent forecasts ỹ}. SG can be thought of as a reconciliation matrix, it takes the
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incoherent base forecasts across all levels of aggregation, and reconciles them.

It is apparent that as long as G has non-zero columns, it linearly combines all ŷ} to

bottom-level forecasts, hence these forecasts blend information from all levels, gaining the

benefit of forecast combinations. A major drawback of traditional hierarchical forecasting

approaches, whether in the temporal or cross-sectional setting, is the fixing of zero-columns

in the G matrix. For example, the bottom-up approach only considers information from

a the bottom-level zeroing out all other forecasts. There is now ample empirical evidence

showing that using the full information set has substantial benefit in forecast accuracy

across all levels (see for example Athanasopoulos et al., 2017; Wickramasuriya et al., 2019a,

and references therein). Panagiotelis et al. (2019) also present theoretical justifications.

Kourentzes et al. (2017) show that the benefits of using multiple levels extend even in the

case that an optimal temporal aggregation level could be in theory identified (for example,

Rostami-Tabar et al., 2013), as in practice estimation uncertainties creep in.

Wickramasuriya et al. (2019a) introduce an optimal full information approach for fore-

cast reconciliation. They show that

G = (S′W−1
} S)−1S′W−1

} (1)

minimises the tr[SGW}G
′S′] subject to SGS = S, where SGW}G

′S′ = Var(y − ỹ}),

the variance covariance matrix of the h-step ahead coherent forecast errors and

W} = E(ê}ê})′ is a positive definite covariance matrix of the base forecast errors

ê} = y − ŷ}. The method is referred to as MinT, as it minimises the trace of the co-

variance of the }-step ahead coherent forecast errors. The significance of the SGS = S

constraint is that the resulting coherent forecasts are unbiased, as long as the base forecasts

that were used are unbiased.

A challenge with the G matrix in MinT as specified in (1), is that it requires an estimate

of W}. A simplifying assumption imposed by Hyndman et al. (2011) focusing on the cross-

sectional hierarchical forecasting setting, and also implemented by Athanasopoulos et al.

(2009), was to set W} = σIn for all }, and σ > 0 is the variance of the forecast errors

of the bottom-level series. This simplifying assumption has been shown to work well in

practice (as shown in the aforementioned references) and also makes the approach trivial

to use, as no further estimation of a covariance matrix is required and G depends only on

S that is always known. However, it does ignore valuable information about the obvious

scale differences and the interrelations between the observations within the hierarchical

structure. In the temporal hierarchy case these are by construction present and therefore

W} = σIn is inappropriate for THieF.
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Structural scaling

Athanasopoulos et al. (2017) and Wickramasuriya et al. (2019a) provide alternative

approximations and estimators for W} in an attempt to overcome the above mentioned

limitations. A particularly useful approximation for forecasting temporal hierarchies is

what is referred to as structural scaling. Set W} = σΛ, where σ > 0, Λ = diag(S1),

and 1 is a unit vector of dimension m. This specification assumes that the bottom-level

base forecast errors associated with the observed time series, have equal variance σ and

are uncorrelated. Hence, it follows that higher level forecast error variances are simply

the sum of the bottom-level errors. For the quarterly example Λ = diag(4, 2, 2, 1, 1, 1, 1).

Hence, each element of the diagonal matrix contains the number of forecast error variances

contributing to each node of the temporal hierarchy.

Structural scaling for THieF has been shown to perform strongly (Athanasopoulos et al.,

2017) in various settings, on par with more involved approximations. In this structural

scaling is very useful, as it only depends on the structure of the temporal hierarchy and

its assumption of proportionally increasing variance to k is reasonable. Furthermore, it

involves no variance estimation, which is important for our case, as this is particularly

challenging in the intermittent demand setting. Note that σ does not need to be estimated

as it cancels out when it enters (1) as part of W}.

2.3. Non-negative reconciled forecasts

Given the intermittent and low count nature of our data an important concern is whether

forecasts remain positive after temporal reconciliation is applied. In general, non-negative

coherent forecasts are not guaranteed with the forecast reconciliation scheme described

above, even when all base forecasts are positive, as reconciliation weights in rows of SG

can be negative.

However in applying temporal reconciliation to intermittent data some special conditions

hold for which generating negative coherent forecasts has low probability. To demonstrate

this in a simple manner we once again assume that we observe our intermittent data at

the quarterly level and therefore we have only two levels of aggregation above the bottom-

level, the semi-annual and annual, as shown in Figure 1. Using structural scaling the

reconciliation weights for each row of SG are shown below.
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ỹA

ỹSA1

ỹSA2

ỹQ1

ỹQ2

ỹQ3

ỹQ4


=



0.333 0.333 0.333 0.333 0.333 0.333 0.333

0.167 0.416 −0.083 0.416 0.416 −0.083 −0.083

0.167 −0.083 0.416 −0.083 −0.083 0.416 0.416

0.083 0.208 −0.042 0.708 −0.292 −0.042 −0.042

0.083 0.208 −0.042 −0.292 0.708 −0.042 −0.042

0.083 −0.042 0.208 −0.042 −0.042 0.708 −0.292

0.083 −0.042 0.208 −0.042 −0.042 −0.292 0.708





ŷA

ŷSA1

ŷSA2

ŷQ1

ŷQ2

ŷQ3

ŷQ4


(2)

Most intermittent demand methods, as well as many conventional forecasting methods,

generate constant forecasts for the required h-steps ahead. Hence, for these cases base

forecasts are not only positive but also identical within levels (we provide statistics on this

from our empirical evaluation in Table 2). Denoting the constant forecasts at the semi-

annual level by ŷSA and forecasts at the quarterly level by ŷQ, the reconciled quarterly

forecasts are given by ỹQ = 0.08ŷA + 0.17ŷSA + 0.33ŷQ. Hence for these cases, coherent

reconciled forecasts are always guaranteed to be positive.

For the rest of the cases, we work on the assumption that only the bottom-level base

forecasts are guaranteed to be positive and identical, which are always generated by methods

forecasting intermittent data. Denoting the identical bottom-level base forecasts by ŷQ

reconciled bottom-level forecasts are given by
ỹQ1

ỹQ2

ỹQ3

ỹQ4

 =


0.083 0.208 −0.042 0.333

0.083 0.208 −0.042 0.333

0.083 −0.042 0.208 0.333

0.083 −0.042 0.208 0.333




ŷA

ŷSA1

ŷSA2

ŷQ

 . (3)

Equation (3) shows one negative reconciliation weight for each reconciled bottom-level

forecast. Furthermore, this negative weight is very low in value compared to the pos-

itive weights, making it very unlikely that these reconciliation combinations will gen-

erate negative forecasts for any “reasonable” set of base forecasts. For example, for

ỹQ1 < 0 we must have generated base forecasts so that 0.083ŷA + 0.208ŷSA1 + 0.333ŷQ <

0.042ŷSA1 . Hence, the definition of reasonable can be loosely interpreted as having base

forecasts that adequately represent or capture the scale of the series at each aggregation

level. Therefore, we anticipate the probability of negative reconciled forecasts to be minimal.

After checking through our empirical results (see Table 3) we find that indeed generating

negative forecasts using structural scaling is highly unlikely, resulting in 2 to 7 cases out of

the 5,000 time series, depending on the experimental settings.
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More generally, when the bottom level forecasts are not expected to be identical, as will

be the case for some intermittent demand approaches (for example, Kourentzes, 2013), or

often for continuous demand data, we expect the probability of negative reconciled forecasts

to increase. Although this is not a concern for this study, we propose below a correction

scheme to address the limited cases we face, which is also more generally applicable.

2.4. Negative forecasts correction algorithm

As it is possible to obtain negative forecasts by using temporal hierarchies, albeit with

small probability, we propose a correction scheme to guarantee non-negative predictions.

Given a vector ỹ} that contains at least one negative value, we can construct a vector c}

that if added to ỹ} it will result in non-negative predictions that remain coherent. The

coherence restriction implies that we cannot simply replace negative values with zeros. To

estimate ch we propose an iterative process. For this we first set y̆} = ỹ} and follow:

Step 1 Form |y̆−} | so that all non-negative forecasts are replaced with zeros and negative

forecasts with their absolute value.

Step 2 Calculate the correction factor for this iteration as cj,} = SG|y̆−} |. Note this

ensures that the correction factor is itself coherent.

Step 3 If y̆} + cj,} contains negative forecasts, then update y̆} = y̆} + cj,}, increase

counter j by 1 and return to Step 1. Otherwise, proceed to Step 4.

Step 4 Calculate the total correction c} =
∑

j cj,}.

At the end of this iterative process ỹ} + c} provides coherent non-negative forecasts. To

ensure quick convergence in Step 3 we use a tolerance margin when evaluating whether

there are any negative forecasts. A low value of 10−8 is appropriate for most cases.

The rationale behind the proposed iterative approach is that at each iteration the nec-

essary correction to achieve non-negative forecasts is distributed throughout the whole

hierarchy so as to retain coherence. This reduces the realised correction, requiring addi-

tional, yet smaller, corrections, which are iteratively applied. Table 1 provides an example

for a quarterly hierarchy for which alternative quarters (Q1 and Q3) have low counts. Base

ŷ}, coherent ỹ} and subsequently adjusted y̆} are provided. Note that the values of the last

column are identical to ỹ} + c}. The table also provides the amount of incoherency. We

calculate this as the cumulative sum of the differences between the annual forecasts and

the sums of the levels below, i.e., the difference between that annual and the sum of the

semi-annual forecasts and the annual and the quarterly forecasts. The proposed iterative

approach has the advantage of fast convergence, while being very simple. In our example
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fewer than 16 iterations were sufficient and already from the 6th iteration any further ad-

justments were beyond the third decimal point. Wickramasuriya et al. (2019b) propose an

alternative algorithm formulated as a constrained quadratic programming problem which

is much more computationally involved. As this is not central to our argument we do not

consider it any further.

Table 1: Example of the iterative correction algorithm for a quarterly temporal hierarchy. j indicates the
iteration number of the algorithm.

Level ŷ} ỹ} y̆}, j = 1 y̆}, j = 2 y̆}, j = 3 y̆}, j = 4 y̆}, j = 5 y̆}, j = 6

A 180 220.67 222.72 223.41 223.64 223.71 223.74 223.75
SA1 135 129.33 130.49 130.86 130.98 131.02 131.04 131.04
SA2 100 91.33 92.24 92.55 92.65 92.69 92.70 92.71
Q1 4 -3.33 -1.09 -0.36 -0.12 -0.04 -0.01 0.00
Q2 140 132.67 131.58 131.22 131.10 131.06 131.05 131.04
Q3 3 -2.83 -0.97 -0.33 -0.11 -0.04 -0.01 0.00
Q4 100 94.17 93.20 92.87 92.76 92.73 92.71 92.71

Incoherency -122.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3. Empirical evaluation

3.1. Data

We evaluate the efficacy of the proposed approach using a real data set of aerospace

spare parts. The data set has been previously investigated in the literature and is charac-

terised by high intermittence and variability (Syntetos et al., 2009; Teunter and Duncan,

2009; Petropoulos and Kourentzes, 2015). It contains 5,000 monthly time series, with 84

observations each. Figure 2 plots the percentage of zero demand periods against the coef-

ficient of variation of the non-zero periods for each time series. Note that the plotted data

include some jittering in the percentage of zeros, to better visualise the number of series in

each bucket.

We can observe that the time series exhibit very high intermittence. On average, across

all the time series, 89.8% periods have zero demand. Furthermore, most time series have

very high demand variability, when that occurs.

Given the relevance of temporal aggregation to this research, we provide in Figure 3

the same information as in Figure 2, but for the temporally aggregated series to the annual

level. Observe that both the percentage of zero demand and the coefficient of variation of

the non-zero demand drop, as expected. In fact, 11.8% of the annually aggregated series

exhibit no periods of zero demand.

For the evaluation we consider three forecast horizons, of 3, 6 and 12 months ahead.

We retain the last 24 months for each series as a test set and perform a rolling origin
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Figure 2: Scatter plot of the percentage of periods of zero demand against the coefficient of variation of
non-zero demand of the original data. Each point corresponds to a time series.
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Figure 3: Scatter plot of the percentage of periods of zero demand against the coefficient of variation of
non-zero demand of the annually aggregated data. Each point corresponds to a time series.

evaluation (Ord et al., 2017; Hyndman and Athanasopoulos, 2018). This is done as follows.

First, we generate a forecast and evaluate its performance. Then we roll the forecast origin

forward to include the next data point from the test set in the training set. We re-specify

our forecasting method and repeat the process until we have used all available test data.

For a given forecasting method and time series we generate 22, 19 and 13 out-of-sample

forecasts for the three forecast horizons respectively, providing an adequate measurement
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of performance.

3.2. Forecasting methods

To generate the forecasts for intermittent time series we rely on the TSB method (Te-

unter et al., 2011). The TSB method was introduced to deal with obsolescence issues in

slow moving items. The forecast for period t + h, for forecast horizon h from period t is

calculated as:

ŷt+h = d̂t+hẑt+h,

where d̂t+h is the forecasted demand event probability and ẑt+h is the forecasted non-

zero demand size. The demand event probability is either 0 or 1, depending on whether

a historical period contained a demand event or not. The forecast d̂t+h is generated by

smoothing the historical probability using single exponential smoothing. For the non-zero

demand, we collect only periods with positive demand and construct a new vector removing

all zero-demand periods, which is then predicted using single exponential smoothing to

obtain ẑt+h.

The TSB method requires setting four parameters, two smoothing coefficients and two

initial values for each single exponential smoothing process. To obtain these we optimise

the method parameters for each time series using the Mean Absolute Rate loss function

(MAR, Kourentzes, 2014):

MAR =

t∑
i=1

∣∣∣∣∣∣ŷi − 1

i

i∑
j=1

yj

∣∣∣∣∣∣,
where yt and ŷt are the observed and fitted demand for in-sample period t. The idea

behind MAR is to calculate the loss at a cumulative level of demand and was shown to

perform better than alternative loss functions, such as MSE, for optimising methods for

intermittent demand data (Kourentzes, 2014; Kourentzes et al., 2019). We rely on the pack-

age tsintermittent (Kourentzes and Petropoulos, 2016b) for the R statistical computing

language (R Core Team, 2019) for the implementation of the TSB method.

Initial experiments found TSB to perform better than alternative intermittent demand

forecasting methods, such as Croston’s method and its modification with the SBA approx-

imation (Syntetos and Boylan, 2001, 2005) on this dataset, and therefore we consider only

the TSB method for the evaluation. Furthermore, obsolescence is relevant for the type of

data and the time scale of our dataset. Past research had found the SBA to perform best

(Syntetos et al., 2005; Teunter and Duncan, 2009), however these findings were prior to the

proposition of the TSB method.

We use the ExponenTial Smoothing (ETS) family of models for continuous demand

time series (Hyndman et al., 2008; Ord et al., 2017; Hyndman and Athanasopoulos, 2018).
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It models time series as the total of four components, the time series level, trend, season

and error term, which may interact with each other in an additive or multiplicative fashion.

Additionally, for the trend component we consider the option of a linear or a damped

trend. Combining all options together, the exponential smoothing family of models is

conventionally considered to contain 30 members, covering an extensive range of time series.

ETS is used widely both in research and practice, due to its relatively good forecasting

accuracy, reliability, transparency and ease of implementation (Gardner Jr, 2006; Holt,

2004; Ord et al., 2017). Due to its prominence in the forecasting literature, we do not

introduce ETS here, and refer the reader to Hyndman et al. (2008), Ord et al. (2017) or

Hyndman and Athanasopoulos (2018) for the details.

In terms of implementation details, ETS model parameters are estimated using maxi-

mum likelihood and the selection between alternative model forms is done by Akaike Infor-

mation Criterion, corrected for sample size, AICc (Burnham and Anderson, 2002; Hyndman

et al., 2008). Hyndman and Akram (2006) show that some of the potential component com-

binations result in unstable forecasts, while Hyndman et al. (2018) recommend eliminating

multiplicative trend models. These restrictions results in a reduced set of 15 models, where

when there is a multiplicative seasonality only multiplicative errors are permitted, and the

trend component may only be absent, additive linear or additive damped. We use the

forecast package (Hyndman et al., 2018) for the R statistical computing language (R

Core Team, 2019) to generate all ETS forecasts. Note that we also trialled ETS with model

selection as a benchmark method for the disaggregate intermittent series. We found this to

be inferior to the TSB benchmark and therefore did not consider it any further. Teunter

and Duncan (2009) have shown that local level exponential smoothing performed poorly

on this dataset, which we also found to hold for the ETS family of models.

We produce benchmark forecasts for the intermittent time series using the TSB method.

We evaluate these against forecasts resulting from implementing forecast reconciliation via

temporal hierarchies which use both TSB and ETS forecasts, as detailed in the following

subsection. Note that we do not use a random walk benchmark, as this would result in

a zero forecast for most of the time series in the dataset. Furthermore, we do not use a

zero forecast as a benchmark, since this has no practical value, following the arguments by

Teunter and Duncan (2009).

3.3. Temporal hierarchies

Given that the observed time series are sampled at a monthly frequency, implementing

temporal hierarchies means that we consider the original monthly time series, as well as the

temporally aggregated bi-monthly, tri-monthly, quarterly, half-yearly and yearly series. At

each level of aggregation we generate base forecasts using either the TSB method or ETS.

14



There is no consensus on how to distinguish between intermittent and continuous de-

mand time series. Syntetos et al. (2005) provide some guidelines for classifying time series

that are forecast more accurately using Croston’s method, the SBA approximation and

single exponential smoothing. However, Kourentzes (2014) demonstrates that this classi-

fication scheme does not outperform approaches based on heuristic selection, in particular

once methods’ parameters are optimised. Furthermore, there is no similar work to help

distinguish between other intermittent demand methods, such as the TSB method used

here, and continuous forecasting methods, and specifically the ETS family of models. We

overcome this issue by considering various alternative intermittence thresholds, which are

calculated as the percentage of periods of zero-demand over the total number of in-sample

periods. We report results for 10%, 20%, 30% and 40%. We expect the performance of ETS

to drop as the intermittent threshold increases, as the presence of multiple zero observations

makes parameter estimation more challenging (Kourentzes and Petropoulos, 2016a).

In our implementation of THieF we used structural scaling to approximate Wh as

discussed in Section 2. From the THieF we retain only the bottom-level forecasts, corre-

sponding to the original intermittent time series. This permits direct comparison with the

benchmark forecasts. We use the thief package (Hyndman and Kourentzes, 2018) for the

R statistical computing language (R Core Team, 2019) to generate the hierarchical fore-

casts, with the appropriate modifications to accommodate the introduction of TSB method

in the temporal hierarchy.

3.4. Evaluation metrics

Given the dataset, in practice, forecasts will be used to support inventory decisions.

Therefore we are interested in the cumulative error over the demand lead time, i.e. for a

given lead time the total forecast demand has to meet the total realised demand. We track

four metrics, the Mean Error (ME), the Root Mean Squared Error (RMSE), the Mean

Interval Score (MIS) and the Pinball loss (PIN). The first two focus on the accuracy of

point forecasts, while the latter two on quantile forecasts. To calculate these, for each set

of 1 to h-step ahead forecasts from forecast origin j, we calculate the cumulative actuals Yj

and cumulative forecasts Ŷj :

Yj =

t+j+h−1∑
i=t+j

yi,

Ŷj =

t+j+h−1∑
i=t+j

ŷi.
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Using these we get:

ME =
1

H

H∑
j=1

(
Yj − Ŷj

)
,

RMSE =

√√√√ 1

H

H∑
j=1

(
Yj − Ŷj

)2
,

MIS =
1

H

H∑
j=1

(
(U − L) +

2

α
(L− Yj)1{Yj < L}+

2

α
(Yj − U)1{Yj > U}

)
,

PIN =

(Yj − U)α, if Yj ≥ U

(U − Yj)(1− α), if Yj < U
,

where the H is the number of rolling origins for the given forecast horizon h, U and L are

the upper and lower quantile forecasts over the lead time demand, α is the target probability

and 1{·} is an indicator function that takes the value of 1 when its condition is true and 0

otherwise.

The ME reports the point forecast bias and the RMSE reports the magnitude of the

point forecast errors. For the measurement of accuracy we rely on quadratic errors as

minimising these we get the expectation of the demand distribution. In contrast, pick-

ing the forecast that minimises absolute errors will result in a forecast that more closely

tracks the median of the demand distribution (Kolassa, 2016). This can be problematic

for intermittent demand data, as often the median is zero and explains some of the issues

reported in measuring forecasting performance in the literature (Teunter and Duncan, 2009;

Kourentzes, 2013).

The MIS shows the performance of the quantiles (L,U) for a given α, the desired interval

(Gneiting and Raftery, 2007). Although we often assume the performance of the point fore-

casts to be a good proxy of the usefulness of the forecasts for the decision maker (Ord et al.,

2017), the MIS connects more meaningfully with the use of forecasts to support inventory

decisions. The PIN focuses on the upper quantile and directly models the asymmetric cost

of over- and under-forecasting (Gneiting, 2011). In a news-vendor setting, the performance

of the quantile of the forecasted distribution is connected with the inventory performance.

Trapero et al. (2019) shows that the inventory performance of the news-vendor and the

order-up-to stock control policy, in the ‘ideal case’, are linearly connected. In the ‘ideal

case’ we do not consider extraordinary disturbances in the supply chain and back-orders are

permitted. The latter is a reasonable assumption for the dataset on hand, that describes

the demand of specialised aerospace spare parts that cannot be sourced from alternative

sources and have to be back-ordered. Therefore, we report MIS and PIN values, as these
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connect better to the decision supported by the forecast. For this evaluation we consider

α = {90%, 95%}.
All ME, RMSE, MIS and PIN are scale dependent errors, making them problematic for

summarising the performance across time series. We divide the performance of the temporal

hierarchies forecast with that of the benchmark TSB for each time series, removing any

scaling issues. We summarise across all time series using the geometric mean (Davydenko

and Fildes, 2013). Let X = {ME, RMSE, MIS, PIN},

AvgRelX =
N

√
N∏∣∣∣∣XA

XB

∣∣∣∣,
where N is the number of time series and the subscripts A and B correspond to the errors

of the temporal hierarchy forecasts and benchmark forecasts respectively, resulting in the

AvgRelAME, AvgRelRMSE, AvgRelMIS and AvgRelPIN metrics. Note that we use the

absolute values, so as to be able to calculate the geometric mean for the ME. The resulting

AvgRelAME reports the magnitude of the bias, disregarding the direction. Relative errors

lower than 1 indicate that the evaluated forecast outperform the benchmark, and vice versa.

Beyond the geometric mean, we also report the centred percentage best providing a

non-parametric assessment of the forecast performance. For each forecast horizon and error

metric, we report the percentage of time series for which THieF outperforms the benchmark

(referred to as percentage better in the literature, Armstrong and Collopy, 1992; Makridakis

and Hibon, 2000) after subtracting 50% to centre the measure around 0% and multiplying

it by 2 to give it a range of [−100%, 100%]. Positive numbers correspond to the temporal

hierarchy forecasts dominating on average, while negative numbers correspond to cases

that the TSB benchmark forecasts are best. Note that this centred and scaled percentage

best metric corresponds to the difference of mean ranks between the two methods. Beyond

providing a non-parametric comparison, this permits to easily calculate whether differences

are statistically significant, using the non-parametric Friedman test (Hollander et al., 2015).

3.5. Empirical quantile estimation

The TSB method, like many intermittent demand methods, outputs only point fore-

casts and therefore we cannot directly calculate desired quantiles of the forecast distribution.

These are necessary to support decisions that depend on the forecasts, such as inventory

management. We opt to estimate the desired quantiles using the empirical approach pro-

posed by Trapero et al. (2019). The authors recommend using kernel density estimation

to achieve a non-parametric modelling of the forecast error distribution, without requir-

ing any assumptions about the underlying distribution. They found that this approach

outperformed other parametric and non-parametric alternatives, especially when the error
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distribution exhibited asymmetries.

As we are interested in the accuracy of the forecast demand over the lead time, we use the

in-sample residuals ej = Yj − Ŷj for the kernel density estimation, where j = (1, . . . , t− h),

for all the in-sample cumulative forecast trace errors. We follow the recommendations by

Trapero et al. (2019) and use the Epanechnikov kernel. At a point x,

f(x) =
1

(t− h)b

t−h∑
j=1

K

(
x− ej
b

)
,

where K(·) is the kernel function:

K(x) =

 3
4
√
5

(
1− 1

5 t
2
)
, if −

√
(5) ≤ x ≤

√
(5)

0, otherwise
,

and b = 0.9A(t − h)−1/5 is the bandwidth of the kernel, with A being an estimate of the

spread of the errors that is given by the minimum between their standard deviation and

their interquantile range divided by 1.34 (Silverman, 1986).

Using the empirical distribution obtained from the kernel density estimation, we can

calculate the desired quantiles. We follow the same approach for both the benchmark TSB

forecasts and the temporal hierarchy forecasts. Relying on the same approach for both,

allows us to isolate any differences in the reported performance to the use of THieF.

4. Results

The motivating argument of this paper is that temporally aggregated intermittent de-

mand time series can exhibit conventional time series components and accounting for these

when generating forecasts can improve forecast accuracy. Table 2 reports the percentage

of time series found to display some additional structure when aggregated, such as trend

or seasonality, as identified using AICc in selecting an ETS model. The table provides

results for different intermittence thresholds and forecast horizons. As the threshold level

increases, more time series are considered by ETS and therefore the percentage of time

series identified to display some extra structure increases.

The reported percentages change slightly for different horizons, as each involves a dif-

ferent number of rolling origin forecasts. We observe that for a 10% threshold about 20% of

the time series are identified to display some additional structure. We note that for thresh-

olds 20% and 30% the percentage stabilises on average to just over 40%. This indicates

that the 10% threshold may be overly restrictive. The jump observed for a threshold of

40% is due to more time series being considered by ETS.
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Table 2: Percentage of series with identified structure at aggregate levels.

Horizon
Intermittence threshold

10% 20% 30% 40%

3 21.58% 43.94% 43.98% 55.62%
6 20.98% 42.40% 42.44% 53.64%
12 19.40% 39.60% 39.64% 50.20%

Figure 4 provides examples of the additional structure modelled by ETS. Two example

series are provided, one at each row, at the original monthly sampling frequency and at

an aggregate level. Historical demand, base in-sample fit and forecasts for the next year

are provided in each panel. In the first case (top panels) a trend becomes apparent at the

aggregate level. In the second case (bottom panels) a seasonal pattern emerges. These

patterns are easily captured by ETS. Base intermittent demand forecasts, using TSB in

our evaluation, are constant. THieF combines these constant forecasts, with the aggregate

ETS forecasts, resulting in forecasts that can capture some of these dynamics that become

apparent only at the aggregate levels.
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Figure 4: Two example series (131 and 4226) with structure appearing at higher temporal aggregation levels.
Forecasts ( ) are generated using TSB and ETS for the disaggregate and aggregate levels respectively.
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Table 3 provides the percentage of cases that THieF resulted in negative values that

required correction, and has the same structure as Table 2. The number of time series ranges

from 2 to 7 out of 5000, which demonstrates the low probability of negative forecasts when

THieF is used for intermittent data, as discussed in Section 2.3. For these cases we rely on

the algorithm described in Section 2.4.

Table 3: Percentage of series with negative hierarchical forecasts

Horizon
Intermittence threshold

10% 20% 30% 40%

3 0.00% 0.04% 0.04% 0.14%
6 0.00% 0.04% 0.04% 0.12%
12 0.00% 0.04% 0.04% 0.08%

Table 4 summarises the performance of point forecasts in terms of AvgRelAME and

AvgRelRMSE. The table is structured as follows: each column corresponds to an intermit-

tence threshold and each row to a different lead time. The left side of the table provides

the geometric mean, while the right side provides the centred percentage best with positive

numbers suggesting improvements over the benchmark forecast. The p-values of the non-

parametric statistical testing are provided in parentheses. The geometric mean retains the

information about the magnitude of the errors, while the centred percentage best considers

only the ranking of methods and matches the statistical test.

Table 4: Point forecast performance summary.

H
o
ri

zo
n

Intermittence threshold

Geometric mean Centred percentage best (p-value)

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

|ME|
3 0.981 0.971 0.972 0.967 8.160 (0.000) 13.560 (0.000) 13.480 (0.000) 17.160 (0.000)
6 0.988 0.988 0.988 0.977 7.040 (0.000) 11.040 (0.000) 11.000 (0.000) 12.800 (0.000)
12 0.994 0.986 0.988 0.979 7.240 (0.000) 8.880 (0.000) 8.640 (0.000) 8.120 (0.000)

RMSE
3 0.991 0.990 0.991 0.992 9.360 (0.000) 5.560 (0.000) 4.840 (0.001) -2.040 (0.149)
6 0.988 0.989 0.990 0.992 9.840 (0.000) 6.120 (0.000) 5.600 (0.000) -1.360 (0.336)
12 0.985 0.989 0.990 0.996 10.720 (0.000) 6.360 (0.000) 6.240 (0.000) 0.240 (0.865)

Considering the geometric mean of both the absolute ME and the RMSE, in all cases

THieF outperforms the TSB benchmark irrespective of lead time or intermittence threshold.

The results for the absolute ME display relatively larger improvements compared to the

RMSE. We can observe that as the intermittence threshold increases, the relative bias

of THieF improves. As the lead time increases, the relative difference in bias decreases.

One might argue that these differences are small, however as the statistical test results
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suggest, almost all improvements are statistically significant. The only exception is for an

intermittence threshold of 40% when considering RMSE.

Note that gains in bias are generally considered to be more effective in improving the

supported inventory decisions compared to the reduction in RMSE. This has been reported

multiple times in the literature (for example, Sanders and Graman, 2009; Kourentzes et al.,

2020).

Table 5 summarises the quantile performance of THieF and the TSB benchmark. The

structure of the table is the same as before, providing the results for MIS and PIN for 90%

and 95% targets. The main difference between the MIS and PIN is that the former considers

the two-sided performance, while the latter focuses on the upper quantile and matches

closely the inventory decision. Overall, we can see larger improvements over the results for

the point forecasts (Table 4). In all cases THieF improves upon the TSB benchmark and

in all cases the reported differences are statistically significant.

Table 5: Quantile forecast performance summary

H
o
ri

zo
n

Intermittence threshold

Geometric mean Centred percentage best (p-value)

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

MIS 90%
3 0.989 0.990 0.989 0.988 36.537 (0.000) 34.575 (0.000) 36.376 (0.000) 37.830 (0.000)
6 0.986 0.986 0.985 0.984 35.814 (0.000) 34.614 (0.000) 37.495 (0.000) 39.176 (0.000)
12 0.977 0.977 0.975 0.973 32.280 (0.000) 33.080 (0.000) 34.920 (0.000) 38.200 (0.000)

MIS 95%
3 0.984 0.983 0.983 0.981 36.844 (0.000) 35.883 (0.000) 37.805 (0.000) 39.808 (0.000)
6 0.984 0.984 0.983 0.982 37.735 (0.000) 37.055 (0.000) 38.856 (0.000) 40.976 (0.000)
12 0.975 0.975 0.974 0.970 33.080 (0.000) 33.360 (0.000) 35.880 (0.000) 40.360 (0.000)

PIN 90%
3 0.997 0.998 0.998 0.998 9.280 (0.000) 7.560 (0.000) 8.800 (0.000) 8.840 (0.000)
6 0.996 0.997 0.997 0.996 9.040 (0.000) 7.480 (0.000) 8.520 (0.000) 11.040 (0.000)
12 0.993 0.993 0.992 0.989 9.120 (0.000) 8.960 (0.000) 10.080 (0.000) 13.400 (0.000)

PIN 95%
3 0.994 0.993 0.993 0.991 9.440 (0.000) 10.760 (0.000) 11.480 (0.000) 12.400 (0.000)
6 0.993 0.992 0.991 0.989 9.200 (0.000) 10.400 (0.000) 10.960 (0.000) 12.840 (0.000)
12 0.994 0.989 0.987 0.980 8.480 (0.000) 9.200 (0.000) 10.960 (0.000) 14.480 (0.000)

For both MIS and PIN, the results improve further in favour of THieF as we consider

more extreme quantiles. In terms of geometric mean of the metrics, as the the lead time

increases, so does the gain over the benchmark. This is the case for both MIS and PIN and

both quantile levels. Arguably, this is expected, as the forecasts at the higher temporal

aggregation levels used within THieF have a stronger effect on the longer term performance

(Kourentzes et al., 2014; Athanasopoulos et al., 2017). As we permit higher intermittence

thresholds, the performance increases marginally.
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For the MIS we observe large gains in terms of the centred percentage best. This pro-

vides strong evidence that the THieF based quantiles outperform the benchmark quantiles

for the majority of the time series. The differences become more pronounced for MIS at

the 95% quantile. The results for PIN show smaller gains for THieF compared to MIS, yet

the same picture emerges. Again, we observe an increase in THieF gains when comparing

the PIN 90% quantile to the PIN 95% quantile. Given that the PIN performance is di-

rectly connected with the inventory decision, this highlights the usefulness of the proposed

approach for higher levels of service.

Overall, from both Tables 4 and 5 we observe that THieF outperforms the TSB bench-

mark. The differences are marginal for RMSE, but increase for the ME where THieF con-

sistently outperforms the benchmark, irrespective of lead time or intermittence threshold.

The benefits of THieF are highlighted further when we consider the quantile performance,

where the differences increase even further. The geometric mean gains are small, yet con-

sistent across all cases and there is strong evidence of statistical significance. We argue

that the practical importance of the gains has two dimensions. First, the size of the gains

is connected to the monetary implications of the dataset on hand. If the forecast items are

very expensive (either in terms of procuring or storing) then even small differences are ben-

eficial. Second, THieF outperforms the benchmark consistently across multiple conditions,

demonstrating its reliability, which when paired with the ease of implementation makes a

compelling case for adoption. Athanasopoulos et al. (2017), using simulation experiments,

demonstrated that THieF performed equally or better than the base forecasts for contin-

uous demand, under a wide range of design uncertainties, including full knowledge of the

underlying demand process. Our results demonstrate that this finding extends to intermit-

tent demand, albeit using real data. Note that merely using temporal aggregation is not

as reliable and in that case the literature does not find the same consistent picture with

the base forecasts often being better (Petropoulos and Kourentzes, 2015; Kourentzes et al.,

2017). The structure of temporal hierarchies is what provides this reliability. Even when no

additional time series components are identified at higher levels of temporal aggregation,

using multiple levels, as in THieF, allows estimating the level of the forecast multiple times,

with a varying degree of intermittency and eventually rely on combining this information

to achieve better forecasts, reducing the modelling risk. This is evident in the relatively

small impact of the intermittence threshold in the outcome of the empirical evaluation.

5. Discussion

In our evaluation we relied on TSB and ETS for predicting the time series. We fur-

ther implemented a heuristical approach to distinguish between the two types of forecasts,
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and when ETS was chosen we followed the recommended modelling approach to select be-

tween the various model forms. It is important to highlight that temporal hierarchies are

independent of the approach used to generate the forecasts, and our selections used here

can be easily substituted. For example, we can use parametric, non-parametric and model

based approaches (Snyder et al., 2012; Svetunkov and Boylan, 2017; Hasni et al., 2019),

machine learning and neural networks (Kourentzes, 2013; Nikolopoulos et al., 2016; Salinas

et al., 2019). Similarly, the framework allows incorporating any rule for switching between

intermittent demand and continuous demand forecasts (Syntetos et al., 2005; Kostenko

and Hyndman, 2006; Kourentzes, 2014; Petropoulos and Kourentzes, 2015; Svetunkov and

Boylan, 2017). Depending on the setup, the propensity for negative forecasts may change.

Irrespectively, the proposed correction algorithm is also model free and therefore applicable

in the general case.

Our argument in this paper is not about using specifically TSB or ETS, but rather that

temporal hierarchies help the modeller capture the time series components that are not easy

or even possible to identify at the disaggregate highly intermittent view that the time series

are sampled. Intermittent data are characterised by uncertainty in the demand size and the

demand event timing. This has made identifying conventional time series components very

challenging, due to the irregularity of demand arrivals. We argue that for an intermittent

model to be meaningful it has to provide predictions that when aggregated can give rise

to the usual time series components, something that existing methods and models for

intermittent demand do not achieve. Although temporal hierarchies do not provide a data

generating process for the sampled data, we argue that it is a step in the right direction, as

at minimum they offer forecasts that are coherent across temporal aggregation levels and

can exhibit the usual time series patterns.

In this work we rely on a spare parts dataset. Our view is that although intermittent

demand forecasting has been very essential in supporting supply chain decisions, as we

increase the frequency of decision making in organisations, most forecasting challenges

are bound to face issues of intermittency. For example, in retailing the horizon of many

operational decisions is 1-day ahead, with a current move to even shorter forecast horizons.

Once the sampling frequency becomes high enough, demand disaggregated at store/item

level will be intermittent with very high probability (Fildes et al., 2019). With sufficiently

high decision making frequency, most problems will exhibit elements of intermittency. In

order to be able to address these, and support decision making in organisations, it will be

essential that any forecasts are aware of the structures that appear at more aggregate levels,

so as to result in aligned decision making. It also demonstrates that additional research is

necessary in intermittent demand forecasting, as this will become increasingly prevalent.

Here we focused on time series components that become apparent at temporally aggre-
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gate views of the data, using temporal hierarchies. The cross-sectional analogous problem,

i.e., a hierarchical structure of the different items in the assortment of an organisation,

typically grouped along the dimension of product type or market segment, is quite com-

mon in practice, and can also lead to different structures appearing at aggregate levels.

This has been investigated in the context of intermittent demand, notably because it can

substantially reduce intermittency, with mixed results. Moon et al. (2012) find that fore-

casting at an aggregate level and then disaggregating to the individual item sales offers

limited gains compared to forecasting directly each series. Li and Lim (2018) propose a

variant for disaggregating forecasts, making use of the forecast demand size and interval,

finding gains in performance. The MinT framework outlined in Section 2 provides a com-

mon mathematical framework for both temporal and cross-sectional hierarchies. Recent

work has demonstrated the connection between temporal and cross-sectional hierarchies

(Kourentzes and Athanasopoulos, 2019), resulting in cross-temporally coherent forecasts.

We argue that this is particularly relevant for intermittent demand forecasting, informing

the most disaggregate intermittent forecasts with structures that appear either temporally

or cross-sectionally, which current intermittent demand forecasting methods are unable to

do.

6. Conclusions

The vast majority of intermittent demand forecasting methods provide constant fore-

casts, assuming that there are no trend or seasonal components in the data. Aggregating

these forecasts to larger time buckets results in constant forecasts, even though the data

start to exhibit such components. To overcome this dissonance we propose using temporal

hierarchies to adjust disaggregate intermittent forecasts to account for identified compo-

nents at higher aggregation views. Furthermore, we discuss the necessary considerations to

forecast with temporal hierarchies on intermittent time series.

In our empirical evaluation we find that THieF provides significantly better point and

quantile forecasts compared to benchmark intermittent demand forecasts. We rely on a

dataset that has been repeatedly explored in the literature. We provide evidence that

several time series exhibit trend and seasonality at aggregate levels, which has not been

identified in the past when modelling them in their original sampling frequency. This

demonstrates the strength of our approach, and validates our intuition that it is simpler to

consider adjusting the intermittent forecasts to reflect the additional structure, rather than

devise a model that identifies these at the disaggregate level.

We do not claim that the combination of TSB and ETS is the sole way to setup THieF

for intermittent demand. On the contrary, we expect that different forecasting approaches
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may be needed for different applications, given advances in individual methods and mod-

els, as well as data considerations, such as sample size. Similarly, although we rely on a

heuristic to distinguish between producing intermittent and continuous forecasts there is

no specific requirement and other criteria may be used. This model independence makes

THieF powerful. Future research should explore these alternatives in more detail.

Another aspect that is not investigated in this work is the effect of data properties. This

work compliments the results in the literature for non-intermittent time series for temporal

hierarchies, by investigating THieF on a highly intermittent dataset. Building on previously

published results (e.g., Athanasopoulos et al., 2017; Kourentzes and Athanasopoulos, 2019)

we anticipate that the quality of the base forecasts is a key determinant of any gains in

forecast accuracy achieved by THieF, which provides benefits when the base forecasts are

incoherent, implying misspecification issues. Naturally, the quality of the base forecasts

dependents on the data. This is particularly relevant for intermittent time series, which are

notoriously difficult to model. Aspects such as the degree of intermittency of the time series,

or more generally the structure of the data, play an important role in the generation of the

base forecasts and in turn on the performance of THieF, and merits further investigation.

In this work we focused on the improvements at the disaggregate intermittent demand

level of the time series, to support operational inventory management decisions. However,

THieF produces coherent forecasts for all aggregation levels in the hierarchy. These are tied

to different decision making problems, with different planning horizons and information

bases. Investigating the benefits of coherent temporal hierarchy forecasts in the wider

organisational context, as well as the gains on the inventory decision by incorporating the

additional information base is interesting for future investigation. Finally, another aspect

that is closely connected with decision making is the cost structure of the forecast errors.

In many applications over- and under-forecasting have asymmetric costs. Although here

we demonstrate empirically that the use of THieF will result in a reduction of forecast

bias, the method remains agnostic to such asymmetries. Future research should explore

the incorporation and impact of cost asymmetries further.
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