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Hierarchical forecasting in a nutshell

• Companies rely on forecasts to support decision making at different levels and functions.

Level Horizon Scope Forecasts Methods Information

Operational Short Local Way too many Statistical Univariate/Hard

Tactical Medium Regional ↕ ↕ ↕

Strategic Long Global Few expensive Experts Multivariate/Soft

Strategic / Experts / External Info

Operational / Models / Past sales

• The challenge: Forecasts must be 
aligned.

• Aligned forecasts → aligned 
decisions.

• The problem can be seen as 
hierarchical forecasting.
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Hierarchical forecasting in a nutshell

• But not all forecasts or levels in the hierarchy are relevant for 
decision makers → still useful as “statistical devices” to add 
information to the hierarchical forecast

• It (perhaps!) is more helpful to think hierarchical 
forecasting as a multivariable (multivariate or 
univariate) problem.

• The different variables (nodes/levels of the 
hierarchy) are connect through the coherency 
constraints.

F(A+B) and F(A)+F(B) will typically 
be different, we need to impose equality 
(coherency of forecasts).

Coherency: F(A+B) = F(A)+F(B)
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Hierarchical forecasting in a nutshell

• One way to manage this is to use the MinT reconciliation approach

• Observe that base forecasts are linearly combined to give us the reconciled forecasts

• 𝑮 tells us how the information from the different forecasts is combined

• Different 𝑾 gives us a variety of approximations, with varying degrees of simplifications 
(e.g. independence) or estimation tricks (e.g. restrictions and shrinkage). 

෥𝒚ℎ = 𝑺𝑮ෝ𝒚ℎ Matrix of base forecasts of all 
variables

MagicSumming matrix, i.e. 
the map of the hierarchy

Reconciled coherent forecasts

𝑮 = 𝑺′𝑾−1𝑺
−1
𝑺′𝑾−1 An approximation of the 

covariance matrix of the 
relevant forecast errors
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A geometric interpretation

• Instead of perceiving the problem algebraically (regression/combination), we can look at it 
from a geometric view

What this figure wants to say 
is that base forecasts are 
projected on a coherent space. If 
W is approximated using OLS 
then we get an orthogonal
projection, otherwise an oblique.

• This is great because it tells us two things:
• The coherent multivariable object has always lowest error than the base counterpart.
• All coherent objects live on the same coherent space (let’s call it C-space).

• But this figure is a bit arcane… so let’s explore more.
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A simplified geometric interpretation

• We stick to a small hierarchy with 3 nodes, so that we can visualise both the 
B-space (where the base forecasts live) and the C-space fully. 

• We simulate a problem and reconcile it using the OLS approximation         
(𝑾 = 𝑑𝑖𝑎𝑔([1 1 1]) – this needs no estimation, both 𝑺 and 𝑾 are known.

This has to be a plane!
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A simplified geometric interpretation

• It is a plane because the bottom level has only two nodes, this defines the dimensionality 
of C-space, while the dimensionality of B-space is the number of nodes prescribed by 𝑺.

• There are a few ways to define a 3D 
plane, we pick two convenient:

• Two intersecting lines on the plane;

• A point and a normal vector of the 
plane (a vector perpendicular to 
the place).

• It turns out that the principal 
components of the coherent forecasts 
(or coherent forecast residuals) do 
exactly these representations.

• Generally, we need the 𝑚-first PC to 
describe the C-space, where 𝑚 is the 
number of bottom-level nodes.
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A simplified geometric interpretation

• Now let us add more 𝑾 approximations:

• OLS is parallel to the 3rd principal component;

• WLS (only variance estimates in the diagonal of 
𝑾), SCL (scaling approximation, assume only 
additivity of variance), SHR (full covariance with 
shrinkage) are oblique projections.

C-space

OLS0 ≤ 𝜃 < 𝜋/2

0 ≤ 𝜑 < 2𝜋

• 𝑾 is a 3x3 matrix, but the geometric 
view requires only 2 parameters to 
produce all 𝑾 approximations, angles 𝜃
and 𝜑, which are also bounded.

• We get an efficiency bonus!
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A geometry inspired reconciliation

• We can ask an optimizer to directly find the two angles, subject to our constraints, by 
minimising directly:

• As the solution by construction will be on the C-space, it is also coherent. 

• Observe that we do not need the MinT framework anymore, as we do not need to estimate 
𝑾 or 𝑮, but rather how to rotate the OLS projection vectors from each point. 

• Nonetheless, it is easy to translate between angles and MinT solutions. 

• Does it work? 

• Well… not really. Two issues:

• The optimization is quite difficult and needs many tricks to make it work;

• Even so, it is a 3D solution, so practically of little interest;

• But there is more to it..! (spoiler: it is still a more efficient solution!)

𝒚𝑡 − ෥𝒚𝒕
2
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A geometry inspired reconciliation

• Let us translate the various 𝑾 approximations to angles from a 1000 simulated hierarchies.

• Not all options are used!

• SCL (Structural scaling, no 
estimation) results in a fixed 𝜃
(19.47);

• WLS (variance in the diagonal of 
𝑾) varies around 27.16;

• SHR (full covariance with 
shrinkage) varies more with a 
mean of 28.28;

• Less assumptions of the 
approximation →more 𝜃!

• Angle 𝜑 is denser for some regions 
(see SCL), but overall independent 
of 𝜃. 
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A geometry abused reconciliation

• We can approximate a rotation by sheering the projection vectors of the OLS.

OLS
It’s oblique!

• To do this we only need to multiply the B-space by a vector with as many elements as the 
dimensionality of the B-space and “back-multiply” to get things back to the original C-space.

𝑮 = 𝑺′𝑾−1𝑺
−1
𝑺′𝑾−1

Completely different 

from MinT ☺

We optimise on 

𝒚𝑡 − ෥𝒚𝒕
2𝑾 =

𝑤1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑤𝑛

All non-diagonals are zero

This can in principle cover 

the complete 𝜃 − 𝜑 plot

Less efficient by 

𝑛 − 𝑚 compared 
to angles
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A geometry abused reconciliation

• Does it work?

• In toy 3D examples yes → of little practical relevant → try on larger hierarchies.

• Two cases, base forecasts are ETS, rolling origin evaluation.

Frequency

Number of 
bottom level 

series
Number of All 

series Sample Test set Horizon
Case 1 Quarterly 56 89 36 20 4
Case 2 Monthly 76 111 240 120 12

Relative 
error

Base OLS SCL WLS SHR RAX
Case 1

MSE 1 0.992 0.987 0.991 0.983 0.977
TSE 1 0.984 0.989 0.991 0.984 0.976

Case 2
MSE 1 0.983 0.965 0.956 0.928 0.923
TSE 1 0.940 0.955 0.936 0.914 0.901

Scale MSE per 
series

Total error 
across series

”Rotation 
approximation”



13/16

A geometry abused reconciliation

• Is it doing the same thing though?

• Back to 3D examples

It seems to be doing 
something different!

Note it has a soft

preference on 𝜃.

There is something to 

the angle of SCL
Very few (bad) SHR 

solutions go beyond RAX
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A heuristic geometry abused reconciliation

• Going from a vector rotation solution to its approximation (RAX) we lost on efficiency. 
Perhaps we can gain back the lost efficiency by using some heuristics:

• Estimate only the weights for the lowest level of the hierarchy and then use            
𝑾 = 𝑺𝑾𝑏→ HRAX: some efficiency as the rotation approach. 

• Estimate the weights for all levels except the lowest. Use HRAX (or WLS) weights for 
the lowest level → HRAXc

• We can also modify WLS as HRAX to get HWLS. Note tha SCL is the equivalent for OLS. 

Relative 
error

Base OLS SCL WLS SHR RAX HRAX HRAXc HWLS
Case 1

MSE 1 0.992 0.987 0.991 0.983 0.977 0.983 0.985 0.989
TSE 1 0.984 0.989 0.991 0.984 0.976 0.985 0.988 0.988

Case 2

MSE 1 0.983 0.965 0.956 0.928 0.923 0.945 0.933 0.959
TSE 1 0.940 0.955 0.936 0.914 0.901 0.926 0.915 0.940
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Conclusions

• All MinT and MinT like solutions can be described efficiently using rotations and there 

seems to be a preference in the obliqueness of the solutions.

• Estimation errors of 𝑾 are easy to spot when looking at the angle representation. Same for 

the restricting effect of the assumptions in the various approximations.

• Rotation reconciliation is difficult to optimise, and does not scale up easily, but it 

encompasses existing frameworks. 

• The rotation approximation (RAX) can overcome these and seems to perform better than 

other good approximations. 

• Next steps:

• Observe that the loss function of RAX can be anything, that gives it a lot of flexibility. 

• Although it is inspired by rotations, it is merely a projection from B-space to C-space.

• This we can solve analytically, by using directly the loss of RAX, instead of 

restricting us to MinT or similar. 

• We will show you this next time!
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