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Hierarchical forecasting in a nutshell

Companies rely on forecasts to support decision making at different levels and functions.

Level Horizon Scope Forecasts Methods Information
Operational Short Local Way too many  Statistical Univariate/Hard
Tactical Medium Regional {) {) {)
Strategic Long Global Few expensive Experts  Multivariate/Soft

The challenge: Forecasts must be
aligned.

Strategic / Experts / External Info

Category
B

Aligned forecasts = aligned
decisions.

The problem can be seen as
hierarchical forecasting.




Hierarchical forecasting in a nutshell

But not all forecasts or levels in the hierarchy are relevant for Temporal
decision makers = still useful as “statistical devices” to add
information to the hierarchical forecast

Semi-
Annual
Annual

Quarter

It (perhaps!) is more helpful to think hierarchical
forecasting as a multivariable (multivariate or
univariate) problem.

Cross-sectional

The different variables (nodes/levels of the Total o T/Q | T/sA | T/A
hierarchy) are connect through the coherency
constraints Store e e s/ |s/sA| s/A
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Hierarchical forecasting in a nutshell

One way to manage this is to use the MinT reconciliation approach

Reconciled coherent forecnsts < Y, = SGY),, = Matrix of base forecasts of all

) ) /(__\/ gg \/ﬂl(l:ﬂbt@g
SUMMLAG MAtYLX, L.€. Ma@'uc

the wmap of the hierarchy
Observe that base forecasts are linearly combined to give us the reconciled forecasts
G tells us how the information from the different forecasts is combined
G = (S’W_lS)_ls’W_l Awn approximation of the

covariance matrix of the
relevant forecast evvors

Different W gives us a variety of approximations, with varying degrees of simplifications
(e.g. independence) or estimation tricks (e.g. restrictions and shrinkage).



A geometric interpretation

* Instead of perceiving the problem algebraically (regression/combination), we can look at it
from a geometric view

/‘\ wWhat this flgure wants to say
T Ls that base forecasts are

v projected on a coherent space. If

W Ls approximated using OLS

S then we get an orthogonal
projection, otherwise an oblique.

* This is great because it tells us two things:
* The coherent multivariable object has always lowest error than the base counterpart.

* All coherent objects live on the same coherent space (let’s call it C-space).

e But this figure is a bit arcane... so let’s explore more.



A simplified geometric interpretation

We stick to a small hierarchy with 3 nodes, so that we can visualise both the @
B-space (where the base forecasts live) and the C-space fully. /
We simulate a problem and reconcile it using the OLS approximation @ é)

(W = diag([11 1]) —this needs no estimation, both S and W are known.
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This has to be a plane!



A simplified geometric interpretation

It is a plane because the bottom level has only two nodes, this defines the dimensionality
of C-space, while the dimensionality of B-space is the number of nodes prescribed by §.

There are a few ways to define a 3D "
plane, we pick two convenient:

 Two intersecting lines on the plane;

* A point and a normal vector of the .
plane (a vector perpendicular to
the place).

It turns out that the principal
components of the coherent forecasts
(or coherent forecast residuals) do
exactly these representations.

Generally, we need the m-first PC to
describe the C-space, where m is the 1\ o
number of bottom-level nodes.




A simplified geometric interpretation

* Now let us add more W approximations:
PCA1 '

* OLS is parallel to the 3™ principal component; \\

(only variance estimates in the diagonal of

W), (scaling approximation, assume only
additivity of variance), SHR (full covariance with

shrinkage) are oblique projections.

Coherent OLS
Coherent WLS
Coherent SCL
Coherent SHR.

C-space

W is a 3x3 matrix, but the geometric

view requires only 2 parameters to
produce all W approximations, angles 6

and ¢, which are also bounded.
 We get an efficiency bonus!




A geometry inspired reconciliation

We can ask an optimizer to directly find the two angles, subject to our constraints, by
minimising directly:

~\2
Ve —¥o)
As the solution by construction will be on the C-space, it is also coherent.

Observe that we do not need the MinT framework anymore, as we do not need to estimate
W or G, but rather how to rotate the OLS projection vectors from each point.

Nonetheless, it is easy to translate between angles and MinT solutions.

Does it work?
* Well... not really. Two issues:
e The optimization is quite difficult and needs many tricks to make it work;
 Evenso, itis a 3D solution, so practically of little interest;

* But there is more to it..! (spoiler: it is still a more efficient solution!)



A geometry inspired reconciliation

Let us translate the various W approximations to angles from a 1000 simulated hierarchies.

Phi (degrees)
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______________________________________________________________________

WLS
SCL
SHR

______________________________________________________________________

Theta (degrees)

Not all options are used!

SCL (Structural scaling, no
estimation) results in a fixed 6
(19.47);

WLS (variance in the diagonal of
W) varies around 27.16;

SHR (full covariance with
shrinkage) varies more with a
mean of 28.28;

Less assumptions of the
approximation = more 6!

Angle ¢ is denser for some regions
(see SCL), but overall independent
of 6.



A geometry abused reconciliation

* We can approximate a rotation by sheering the projection vectors of the OLS.
o

OLS

>SS obligue!

This can Lin prmalptem

the complete 0 — @ plot

* To do this we only need to multiply the B-space by a vector with as many elements as the
dimensionality of the B-space and “back-multiply” to get things back to the original C-space.
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A geometry abused reconciliation

e Does it work?

* Intoy 3D examples yes = of little practical relevant = try on larger hierarchies.

* Two cases, base forecasts are ETS, rolling origin evaluation.

Number of
bottom level Number of All
Frequency series series Sample Test set Horizon
Case 1 Quarterly 56 89 36 20 4
Case 2 Monthly 76 111 240 120 12
Relative  Base OLS SCL WLS SHR RAX <
seale N,\SE P@V error Case 1l ™ "Rotatlon
SELES N MisE 1 0992 0987 0991 0983 0977  approximation’
Total ervor /-o TSE 1 0984 0.9C89 0.991 0.984 0.976
J ase 2
ACY0SS SEries MSE 1 0983 0965 0.956 0.928 0.923
TSE 1 0940 0.955 0.936 0.914 0.901




A geometry abused reconciliation

Note it has a soft

Is it doing the same thing though? preference on 6.

Back to 3D examples
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It seems to be dolng >
something different!
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the angle of sCL solutions go beyond RAX
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A heuristic geometry abused reconciliation

Going from a vector rotation solution to its approximation (RAX) we lost on efficiency.
Perhaps we can gain back the lost efficiency by using some heuristics:

* Estimate only the weights for the lowest level of the hierarchy and then use
W = SW, - HRAX: some efficiency as the rotation approach.

* Estimate the weights for all levels except the lowest. Use HRAX (or WLS) weights for

the lowest level 2 HRAXc

* We can also modify WLS as HRAX to get HWLS. Note tha SCL is the equivalent for OLS.

Relative Base OLS SCL WLS SHR RAX HRAX HRAXc HWLS
error Case 1l
MSE 1 0992 0987 0991 0.983 0.977 0.983 0.985 0.989
TSE 1 0984 0989 0991 0.984 0.976 0.985 0.988 0.988
Case 2
MSE 1 0983 0965 0.956 0928 0.923 0.945 0.933 0.959
TSE 1 0940 0955 0.936 0914 0.901 0.926 0.915 0.940




Conclusions

All MinT and MinT like solutions can be described efficiently using rotations and there
seems to be a preference in the obliqueness of the solutions.

Estimation errors of W are easy to spot when looking at the angle representation. Same for
the restricting effect of the assumptions in the various approximations.

Rotation reconciliation is difficult to optimise, and does not scale up easily, but it
encompasses existing frameworks.

The rotation approximation (RAX) can overcome these and seems to perform better than
other good approximations.

Next steps:
* Observe that the loss function of RAX can be anything, that gives it a lot of flexibility.
* Although itis inspired by rotations, it is merely a projection from B-space to C-space.

* This we can solve analytically, by using directly the loss of RAX, instead of
restricting us to MinT or similar.

*  We will show you this next time!
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