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Abstract

Hierarchical forecasting has been receiving increasing attention in the literature. The notion
of coherency is central to this, which implies that the hierarchical time series follows some linear
aggregation constraints. This notion, however, does not take several modelling uncertainties
into account. We propose to redefine coherency as stochastic. This allows to accommodate
overlooked uncertainties in forecast reconciliation. We show analytically that there are two
potential sources of uncertainty in forecast reconciliation. We use simulated data to demonstrate
how these uncertainties propagate to the covariance matrix estimation, introducing uncertainty
in the reconciliation weights matrix. This then increases the uncertainty of the reconciled
forecasts. We apply our understanding to modelling accident and emergency admissions in a UK
hospital. Our analysis confirms the insights from stochastic coherency in forecast reconciliation.
It shows that we gain accuracy improvement from forecast reconciliation, on average, at the cost
of the variability of the forecast error distribution. Users may opt to prefer less volatile error
distributions to assist decision making.

Keywords: forecasting, coherency, model uncertainty, forecast combination, covariance

estimation

1. Introduction

Forecasting is an essential activity for decision making in organisations. Often forecasts

and supported decisions are organised in hierarchies. These hierarchies can be constructed from

market segments, products, or other demarcations (Athanasopoulos et al., 2009). Beyond cross-

sectional hierarchies, there are temporal hierarchies where different functions in an organisation

require forecasts at different sampling frequencies and planning horizons (Athanasopoulos et al.,

2017). Combining both is also possible, which aims to provide a coherent view of the future

across both dimensions (Kourentzes and Athanasopoulos, 2019).

All the hierarchical forecasting methods are based on the property of coherency (Wickrama-

suriya et al., 2019; Jeon et al., 2019; Taieb et al., 2020; Athanasopoulos et al., 2020). It implies
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that the lower level forecasts add up to the forecasts of the higher levels. For example, sales of

individual products in a hierarchy sum up to product category sales at higher levels, in observa-

tions and forecasts. When forecasts are produced independently, they are typically not coherent,

and this has been one of the motivations for developing hierarchical forecasting methods. This

enables aligned planning and actions throughout organisations and stake-holders (Kourentzes

and Athanasopoulos, 2019), which is the main motivation for hierarchical forecasting in an or-

ganisational context. The concept of coherency has been central in temporal dissagregation,

establishing a link between high and low frequency time series. For example, Chow and Lin

(1971) uses a highly restrictive generalised linear regression model to this purpose.

In the past, studies attempted to tackle this problem by employing a bottom-up or top-down

approach (Fliedner, 2001). The main issue with these methods is that they ignore information

either at higher levels or lower levels (Athanasopoulos et al., 2009; Ord et al., 2017), thus lead-

ing to less accurate forecasts. Furthermore, implicitly we accept increased modelling risk, as

all forecasts in the hierarchy are based on a single (top-down) or a few (bottom-up) forecast-

ing models, which may be misspecified. This misspecification can have adverse effects on the

uncertainty of the forecasts across the hierarchy, resulting in increased costs of any supported

decisions, such as unmet demand due to poor forecasts.

Nowadays, hierarchical forecasting is seen as a reconciliation problem, where forecasts are

generated at all levels and then are reconciled to a common view of the future (Hyndman et al.,

2011, 2016; Wickramasuriya et al., 2019). Several studies have shown significant improvements

in forecast accuracy in different contexts, when hierarchical reconciliation techniques are used

(Yang et al., 2016; Oliveira and Ramos, 2019; Kourentzes and Athanasopoulos, 2019, 2021). In

brief, forecast reconciliation is achieved by linearly combining all forecasts from the hierarchy

to a set of adjusted bottom-level forecasts, which by construction make use of all available

information, and then aggregating these to reconciled forecasts for the complete hierarchy. Note

that since we no longer rely on forecasts at any specific level, we mitigate uncertainties stemming

from the specification of the forecasting methods that both top-down and bottom-up methods

suffer from. Apart from providing coherent forecasts, the reconciliation methods also often

improve upon the accuracy of the base independent forecasts in cross-sectional, temporal, and

cross-temporal hierarchies (Hyndman et al., 2011; Athanasopoulos et al., 2017; Wickramasuriya

et al., 2019; Kourentzes and Athanasopoulos, 2019; Kourentzes et al., 2021).

Nonetheless, in the literature there is empirical evidence that hierarchical forecasting does
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not universally result in reduced forecast uncertainty and better forecast accuracy. In temporal

hierarchies, Athanasopoulos et al. (2017) demonstrate that model selection uncertainty affects

the efficacy of forecast reconciliation. Base forecasts from well-specified forecasting models gain

little benefit from forecast reconciliation, whereas forecasts from mis-specified models are im-

proved significantly. Furthermore, Kourentzes and Athanasopoulos (2019) find that combining

cross-sectional and temporal hierarchies offers ‘small yet significant’ improvement upon the ac-

curacy of the base forecasts, as the first dimension, the temporal, already mitigates much of the

uncertainty in base forecasts. However, in order to reconcile forecasts, a reconciliation weights

matrix is needed, and defining this matrix in the cross-temporal case can be challenging (see

also Di Fonzo and Girolimetto, 2020). In cross-temporal hierarchies, Kourentzes and Athana-

sopoulos (2019) average across multiple estimates of the reconciliation weights matrix to avoid

unnecessary estimation uncertainty, while retaining coherency. Results in Panagiotelis et al.

(2021) show substantially different forecast error variances depending on how the reconcilia-

tion weights matrix is calculated. Empirical results from the retail and tourism sectors further

demonstrate this variability of performance that appears to depend on the calculation of the

reconciliation weights (Wickramasuriya et al., 2019; Oliveira and Ramos, 2019). We argue that

there are inherent uncertainties in forecast reconciliation that have not been explored in the

literature, which we investigate here.

Thus, it appears that recent studies have overlooked the effect of uncertainties in forecast

reconciliation. Panagiotelis et al. (2020, Theorem 3.1) demonstrate that the only source of un-

certainty is originating from the base forecasts, and the reconciliation weights matrix is assumed

to have no uncertainty and effectively treated as known. Nevertheless, since we estimate the

reconciliation weights, we face uncertainty in their estimation. Furthermore, as there are dif-

ferent approximations for the covariance matrix (Hyndman et al., 2011, 2016; Athanasopoulos

et al., 2017; Wickramasuriya et al., 2019; Nystrup et al., 2020), this leads to a selection question.

Thus, the conventional reconciled forecast variance is potentially underestimated. Note that we

consider parameter estimation and forecasting method selection uncertainties as two aspects of

the same modelling issue.

Apart from that, there is another complication with hierarchical time series. There is a

gap between how the hierarchical time series are collected in practice and how we use the data

for forecasting. Suppose that we see the original information coming from the bottom-level of

the hierarchy. For example, in macroeconomic variables the data is collected either by surveys,
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estimates, or a combination of them. As the data are collected for different nodes or levels of

the hierarchy, the bottom level does not always add up to the higher levels of the hierarchy.

Statistics bureaux use the account ‘statistical discrepancy’ to fill the gap. Athanasopoulos et al.

(2020) treat the discrepancy as another time series in forecast reconciliation. This affects how we

perceive coherency in hierarchical time series, both in the observational and population levels,

as well as how we understand modelling uncertainty in forecast reconciliation.

In order to address all these issues, we propose the notion of “stochastic coherency”.

Stochastic coherency is easy to understand if we use the geometric interpretation of forecast

reconciliation (Panagiotelis et al., 2021). Incoherent base forecasts (the initial forecasts for each

node of the hierarchy) are projected to a coherent subspace. Conventionally, this projection has

no uncertainty, while with stochastic coherency, the projection becomes stochastic. Equivalently,

if we see forecast reconciliation from a forecast combination interpretation (e.g., Kourentzes and

Athanasopoulos, 2019), the combination weights are stochastic.

Suppose we have a set of forecasts from a sample of time series and a hierarchy is given.

When we collect additional samples and re-estimate the reconciliation weights matrix, that is

bound to change due to the estimation of covariance matrix approximations. However, as long

as the estimated reconciliation weights matrix meets the coherency constraint (Wickramasuriya

et al., 2019), the forecasts are coherent, but they will change as the weight matrix changes. The

key here is to acknowledge that the uncertainty of coherent forecasts comes from the incoherent

base forecasts and propagates to the estimation of the reconciliation weights matrix. This

increases the uncertainty of coherent forecasts.

Another differentiating characteristic of stochastic coherency is how the error terms in the

data generating process are treated. We realise that the error term in the hierarchical time

series itself may contain not only the innovations but also potential errors coming from data

collection, such as sampling and measurement errors. On top of that, modelling uncertainty is

introduced when we produce forecasts. Hence, it allows us to decompose the variance of coherent

forecasts. As we show later in the paper, this has important implications for the construction

of the estimated covariance matrix and coherent forecasts.

Stochastic coherency affects not only point forecasts but also probabilistic forecasts. In

order to understand the effect of stochastic coherency on probabilistic coherent forecasts better,

we refer to its definition by Taieb and Koo (2019) and Panagiotelis et al. (2020). The former

defines the probabilistic coherent forecasts as convolutions of linear constraints, while the latter
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defines them in a more flexible manner as to extend to non-linear constraints (Panagiotelis et al.,

2020, p. 8). However, both definitions are rooted from the idea of forecast reconciliation where

the base point forecasts are projected onto the coherent space by the reconciliation weights

matrix, and they assume that the weights matrix is known. Our stochastic coherency highlights

the uncertainty of these weights, or the projection, and it will affect both the point and the

probabilistic forecasts. This will increase the coherent probabilistic forecasts uncertainty. We

argue that these are important characteristics in the application of hierarchical forecasting in

organisations, where understanding and controlling the sources of uncertainty is important for

mitigating risks associated with decision making, beyond any accuracy improvements.

We explore stochastic coherency in detail in Section 2 and 3. We show when forecast rec-

onciliation becomes beneficial, and we explore uncertainties in forecast reconciliation further,

attributing them to their sources. We find that the more complete the covariance matrix ap-

proximation is, the better the resulting point forecast accuracy can be but at the cost of the

increased variance of the reconciled forecast errors. In Section 4, we conduct a simulation ex-

periment to validate our understanding. In Section 5 we apply this to modelling accident and

emergency admissions at a UK hospital, demonstrating the effect of stochastic coherency on a

real complex problem. Based on these findings, we discuss and conclude our work in Section 6.

2. Classical and Stochastic Coherency

The notion of coherency in hierarchical forecasting has been proposed and elaborated by

a series of hierarchical forecasting works (Athanasopoulos et al., 2009; Hyndman et al., 2011,

2016; Wickramasuriya et al., 2019; Panagiotelis et al., 2021; Athanasopoulos et al., 2020). The

literature defines forecasts as coherent forecasts if they adhere to a linear constraint, e.g. they

add up according to the hierarchy, often simplified as the bottom level forecasts aggregating to

the higher level forecasts. In a similar manner, Taieb et al. (2020) define mean coherent forecasts

when the errors between aggregated bottom-level forecasts and the independent forecasts at the

upper-level are zero.

Let us explore the hierarchical approach in detail. Suppose that yt is a n × 1 vector of

hierarchical time series across the hierarchy, at period t, where yt is constructed from bt, a

m× 1 vector of the bottom-level time series, and a summation matrix, S. In this case, S maps

the bottom-level onto the upper-level of the hierarchy. The coherent hierarchical time series is
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denoted as,

yt = Sbt. (1)

We argue that Eq (1) is not general. Let us consider how time series data is collected in

different organisations. In any retailer which records demand of every stock keeping unit at

the bottom-level in real-time, they can update new information in the middle and the top of

hierarchy at time t, across the hierarchy, instantaneously. This means that the hierarchical time

series are coherent, even as new information becomes available. On the other extreme, we may

need to estimate the data, even though by nature it is a part of a hierarchy, for example the

gross domestic product (GDP). For instance, the Office of National Statistics United Kingdom

measures national accounts through surveys, forecasts, and estimates from models, which are

subject to errors (Office for National Statistics, 2011). Once an account is measured, they need to

reconcile the number from different methods and sources. Hence, in the case of GDP, the values

in the hierarchy from aggregating the bottom-level data and collecting data from each level

will be different. To accommodate the potential gap, the statistical bureaux create an account

called statistical discrepancy (Australian Bureau of Statistics, 2015, p. 471). This discrepancy

captures any potential error coming from measurement and sampling errors. Athanasopoulos

et al. (2020) treat the discrepancy as a time series. It is easy to identify scenarios where

such measurement issues violate the classical coherency, from individual companies, to national

statistics. Therefore, due to the measurement errors, we redefine hierarchical time series yt as,

yt = Sbt + δt,

where δt is the statistical discrepancy at time t. By nature, δt is zero when data collection is

done perfectly and able to measure the variables of interest accurately.

First, we discuss the time series in population. Suppose that we know the true data gen-

erating process of bt, which has an additive state-space structure. We use this framework

illustratively and we are not restricted to it. Nonetheless, the state-space modelling framework

is very flexible and encompasses many popular forecasting model families. Let:

bt = µb,t + ηb,t, (2)

where µb,t denotes the structure of the time series and ηb,t is the innovation term at period
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t, which for simplicity follows a multivariate normal distribution with zero mean and has a

covariance matrix of Σb. We aggregate bt by multiplying with S and from Eq (2), and we get

yt as a vector time series,

yt = Sbt + δt

= Sµb,t + Sηb,t + δt

= µt + εt (3)

where εt is the total residual of the process, which consists of the aggregated innovations and

the statistical discrepancy, denoted as εt = Sηb,t + δt, and µt = Sµb,t. In this case, we assume

that E(δt|It) = 0, and from definition E(ηb,t|It) = 0, thus E(Sηb,t|It) = 0. In expectation, Eq

(3) becomes,

E(yt|It) = E(Sbt + δt|It)

= E(Sµb,t|It) + E(Sηb,t|It) + E(δt|It)

= E(µt|It)

where It is the available information at t. We can also infer that µt = Sµb,t and this also holds

at period t + h. This shows that the time series is coherent in expectations, meaning that the

linear hierarchical structure, S, guarantees coherency in the structures of the time series, but

does not necessarily guarantee coherency in the residuals.

In observations, we exploit It by differentiating between the type of the information, namely

θ as a set of forecasting models in the hierarchy, and Yt as the available hierarchical time series,

where Yt = {y1, . . . ,yt}. Note that θ is not restricted to a single family of forecasting models

and can be different forecasting models or methods for each series across the hierarchy.

Using forecasting models θ, we produce h-step ahead base forecasts. The forecasts, typically,

adhere to the classical coherency, but are inaccurate. Following the hierarchical forecasting

literature, we can reconcile base forecast as:

ỹt+h|t = SGŷt+h|t, (4)

where ỹt+h|t is h-step ahead reconciled forecast, and G is a reconciliation weights matrix, which

combines all forecasts across the hierarchy to create adjusted bottom-level forecasts. As S
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and ŷt+h|t are available prior to the reconciliation, G is estimated. Wickramasuriya et al.

(2019) propose the MinT Reconciliation to obtain G, by minimising the trace of covariance

matrix of the reconciled forecast error (ẽt+h|t = yt+h|t − ỹt+h|t), instead of reconciliation error

(εt+h|t = ŷt+h|t − ỹt+h|t):

min Tr
(
SGWt+h|tG

>S>
)

subject to SGS = S, or alternatively GS = I, where Wt+h|t = E(êt+h|tê
>
t+h|t|It) and êt+h|t

is the h-step ahead base forecast error, yt+h − ŷt+h|t. They show that forecasts are unbiasedly

coherent when the unbiasedness constraint, or SGS = S, holds and also implies that SG is a

projection matrix. Thus, the optimal reconciliation weights matrix is formulated as:

G = (S>W−1
t+h|tS)>S>W−1

t+h|t. (5)

Eq (5) shows thatG is valid under a set of forecasting models θ and depends on the expected

value of the h-step ahead base forecast error covariance matrix, which contains the uncertainties

from the corresponding forecasting models. In a limited sample, Ŵt+h|t, is constructed from

the estimated parameters of the forecasting models θ and the one-step ahead base forecast error

covariance matrix, Ŵt+1|t. Being estimated, Ŵt+h|t is uncertain due to modelling uncertainty,

and this influences the uncertainty of G. In the observational level where the sample size is

limited, we denote the estimated reconciliation weights matrix as Ĝ, thus SĜS = S is subject

to uncertainty and the coherency constraint depends on how we utilise the available information,

given a limited sample. To avoid confusion we clarify the notion here: G refers to the weights

matrix of the conventional coherency from the literature. Here, we use Ĝ to highlight that Ĝ

is estimated. In our stochastic coherency framework G and Ĝ are coincide. We also introduce

Γ that is the weights matrix in population.

The expectation of the reconciled forecasts conditional to It is:

E(ỹt+h|t|It) = E(SĜŷt+h|t|It)

= SΓµt+h|t

= SΓSµb,t+h|t,

where E(ŷt+h|t|It) = µt+h|t = Sµb,t+h|t, and Γ = E(Ĝ|It). Coherency needs the unbiasedness

property to ensure that the forecasts are coherent via distributing information across the hier-
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archy through linear combination. The multiplication between S and Γ results in a projection

which maintains coherency with regard to any overlooked errors from forecasting models, such

as the estimation errors or any statistical discrepancies.

As SΓ and SĜ are both projection matrices, this property should be maintained. For

example, we maintain the projection matrix to be idempotent. This should hold in both the

population and the estimation level, SΓSΓ = SΓ and SĜSĜ = SĜ. The linear projection,

which maintains unbiasedness and coherency, basically ensures the projected forecasts lie on the

coherent subspace (Panagiotelis et al., 2021). The issue now is how uncertain the estimated

projection matrix is. In the case of SΓ, it projects to µt+h|t, whereas SĜ may project the

forecasts a bit further from µt+h|t. Thus, the uncertainty in the projection highlights the

importance of modelling uncertainty, since the former originates from the latter. Therefore, we

redefine coherency by treating the coherent projection matrix, SΓS = S to mitigate overlooked

errors from the forecasting models in forecast reconciliation. We call it stochastic coherency.

Figure 1: Forecast reconciliation uncertainty framework. Boxes in beige depict our novel understanding in forecast
reconciliation uncertainty framework.

Figure 1 summarises the view of the uncertainties in forecast reconciliation we gain from

stochastic coherency. Modelling uncertainty leads to the uncertainty in the base forecasts, as

in conventional forecasting (Chatfield, 1995). This contributes to the uncertainty of reconciled

forecast, which is well understood in the hierarchical forecasting literature (for example, Athana-

sopoulos et al., 2017). With stochastic coherency we demonstrated that there are additional

sources of uncertainty, that can help explain the observations in the literature (Panagiotelis

et al., 2021). There is uncertainty in the covariance matrix approximation, which is naturally

connected to the uncertainty of the base forecasts. This additional uncertainty is both due

the estimation and selection of an appropriate covariance matrix approximation method. Both

contribute to the uncertainty of the reconciliation weights, which adds to total uncertainty of

the reconciled forecasts.

As modelling uncertainty plays an important role in forecast reconciliation, i.e. how we

exploit It, we discuss the effect of model specification on the reconciliation. We illustrate the
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effects by focusing on the case when the forecasts are unbiased. Then, we move to two special

cases, namely reconciling biased forecasts and reconciling forecasts from perfectly specified fore-

casting models. We demonstrate how modelling uncertainty, as in the structure of the models

and the parameter estimation, affects forecast reconciliation.

3. Reconciling Unbiased Forecasts with Stochastic Coherency

In this scenario, we consider well-specified forecasting models. The forecasting models are

able to capture the structure of the data generating process well, but suffer from parameter

estimation uncertainty. Given the limited sample size in Yt, we produce h-step ahead base

forecasts, ŷt+h|t, and we expect that E(ŷt+h|t|It) = µt+h|t. Thus, the uncertainty due to

parameter estimation is ŷt+h|t − E(ŷt+h|t) = vt+h|t, where E(vt+h|t|It) = 0. Note that the

irreducible forecast error at period t + h is defined as ζt+h|t = yt+h − µt+h|t. This differs from

εt+h as the latter is unconditional.

As the base forecasts are ŷt+h|t = µt+h|t + vt+h|t, the base forecast errors become:

êt+h|t = yt+h − ŷt+h|t

= µt+h|t + ζt+h|t − µt+h|t − vt+h|t

= ζt+h|t − vt+h|t. (6)

From Eq (6), we can see that the base forecast errors consist of the irreducible error and

the error due to parameter estimation. The latter is affected by the sample sizes.

We aim to reconcile the base forecasts with regard to the hierarchical structure, using

ỹt+h|t = SĜŷt+h|t. To estimate Ĝ, we need to estimate the h-step ahead base forecast error

covariance matrix,

Ŵt+h|t = Zt+h|t + Vt+h|t +Ct+h|t,

where Zt+h|t is the covariance matrix of ζt+h|t and Vt+h|t is the covariance matrix of vt+h|t,

where E(Zt+h|t) = Σ and E(Vt+h|t) = V , and Ct+h|t is the covariance matrix between ζt+h|t

and vt+h|t. Therefore,

Ĝ = (S>(Ŵt+h|t)
−1S)>S>(Ŵt+h|t)

−1. (7)

Looking at Eq (7), Ĝ is uncertain, because the variances and the covariances of Ŵt+h|t
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depend on the parameter estimation uncertainty, given a limited sample size. We can see that

the uncertainty in forecasting models is transferred to Ĝ, which will affect the reconciled forecast

errors. The reconciliation weights matrix may not be able to improve the base forecast accuracy

due to this uncertainty.

From Eq (7), we can produce the reconciled forecasts, ỹt+h|t = SĜŷt+h|t, and decompose

the reconciled forecast error:

ẽt+h|t = yt+h − ỹt+h|t

= yt+h − SΓµt+h|t + SΓµt+h|t − SĜŷt+h|t

= yt+h − SΓµt+h|t + SΓµt+h|t − SĜ(µt+h|t + vt+h|t)

= ζt+h|t︸ ︷︷ ︸
irreducible error

+ (SΓ− SĜ)µt+h|t︸ ︷︷ ︸
reconciliation matrix

estimation error

+ (−SĜvt+h|t)︸ ︷︷ ︸
reconciled

estimation error

(8)

where ζt+h|t = yt+h − µt+h|t, and SΓµt+h|t = µt+h|t as SΓS = S and µt+h|t = Sµb,t+h|t. Eq

(8) shows that the reconciled forecast error consists of the irreducible error, the reconciliation

matrix estimation error, and the reconciled estimation error, which will affect the uncertainty

of reconciled forecast error variance.

Looking at the relations between different forecast errors in forecast reconciliation, Pana-

giotelis et al. (2020) and Panagiotelis et al. (2021) use generalised Pythagoras theorem to es-

tablish their relationships. We argue that it needs a relaxation to accommodate the uncertainty

by using triangular inequality, where the relationship is shown as,

||yt+h − ŷt+h|t||2 ≤ ||yt+h − ỹt+h|t||2 + ||ŷt+h|t − ỹt+h|t||2, (9)

SSEbase ≤ SSErecon + SSEε,

where SSEε is the sum squared reconciliation error and SSEε = ||ŷt+h|t − ỹt+h|t||2 ≥ 0. If the

left hand side of Eq (9) is equal to the right hand side, then ||yt+h− ŷt+h|t||2 ≥ ||yt+h− ỹt+h|t||2.

However, Eq (9) demonstrates that SSErecon may exceed SSEbase as a result of the overall

uncertainty in forecast reconciliation. Given the case of unbiased forecasts, we discuss two

special cases when the forecasting models are mis-specified and perfectly specified.
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3.1. Special Case I: Mis-specified Forecasting Models

Due to unknown data generating processes, it is possible to obtain mis-specified models,

denoted by †, i.e. adding a redundant variable, wrong transformation, or omitted variables.

In the case of mis-specified forecasting models, we produce biased h-step ahead base forecasts,

where ŷ†t+h|t = ŷt+h|t + o†t+h|t and E(o†t+h|t|It) = o†, which may be nonzero. The base forecast

error is shown as,

ê†t+h|t = yt+h − ŷ†t+h|t

= µt+h|t + ζt+h|t − µt+h|t − vt+h|t − o
†
t+h|t

= ζt+h|t − vt+h|t − o
†
t+h|t. (10)

Consequently, the h-step ahead biased base forecast error covariance matrix can be con-

structed as:

Ŵ †
t+h|t = Zt+h|t + Vt+h|t +O†t+h|t +C†t+h|t,

where O†t+h|t is the estimated covariance matrix of o†t+h|t and E(O†t+h|t) = O†. In this case,

C†t+h|t collects all covariances between ζt+h|t, vt+h|t, and o†t+h|t. Hence, we can calculate Ĝ in

the case of mis-specified models, or Ĝ†, such as,

Ĝ† = (S>(Ŵ †
t+h|t)

−1S)>S>(Ŵ †
t+h|t)

−1. (11)

Note that Eq (5) is obtained from the assumption of unbiased base forecasts. However, we aim

to show that we are still able to reconcile the forecasts, even if the forecasts are biased, but it

will come at a cost of more variability due to an additional element in the modelling uncertainty.

Using Eq (11), we construct the reconciled forecasts as ỹ†t+h|t = SĜ†ŷ†t+h|t and the recon-
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ciled forecast error is shown as,

ẽ†t+h|t = yt+h − ỹ†t+h|t

= yt+h − SΓ(µt+h|t + o†t+h|t) + SΓ(µt+h|t + o†t+h|t)− SĜ
†ŷ†t+h|t

= yt+h − SΓµt+h|t + SΓµt+h|t − SĜ†(µt+h|t + vt+h|t + o†t+h|t)

= ζt+h|t︸ ︷︷ ︸
irreducible

error

+ (SΓ− SĜ)µt+h|t︸ ︷︷ ︸
reconciliation matrix

estimation error

+ (−SĜ†vt+h|t)︸ ︷︷ ︸
reconciled

estimation error

+ (−SĜ†o†t+h|t)︸ ︷︷ ︸
reconciled
bias error

, (12)

where ζt+h|t = yt+h−µt+h|t, and SΓo†t+h|t cancels out and similar to Eq (8) SΓµt+h|t = µt+h|t

as SΓS = S and µt+h|t = Sµb,t+h|t. Hence, Eq (12) shows that the reconciled forecast error

from biased unreconciled forecast consists of the irreducible error, the reconciliation matrix

estimation error, the reconciled estimation error, and the reconciled bias error. This additional

error affects the uncertainty of the sum squared reconciled forecast error.

3.2. Special Case II: Perfectly-Specified Models

Suppose we were able to produce forecasts from perfectly-specified forecasting models,

where the parameters and the data generating process are known. The h-step ahead base

forecasts will match with the structure of the hierarchical time series in expectations and in the

observational level, shown as ŷt+h|t = µt+h|t. Hence, the h-step ahead base forecast error is the

irreducible error, shown as yt+h − ŷt+h|t = yt+h − µt+h|t = ζt+h|t.

Suppose we aim to reconcile the base forecasts, the reconciled forecasts are shown as,

ỹt+h|t = SĜµt+h|t

= SĜSµb,t+h|t

= µt+h|t (13)

where µt+h|t = Sµb,t+h|t and SΓS = S. In this case, if the structure and the parameters

are known, SĜ = SΓ, and Ĝ becomes irrelevant because the forecasts are coherent already.

Following Eq (9), since the forecast errors between both forecasts are the same, then ||ŷt+h|t −

ỹt+h|t||2 = 0. Consequently, ||yt+h− ŷt+h|t||2 = ||yt+h− ỹt+h|t||2, as ỹt+h|t = ŷt+h|t = µt+h|t. In

perfetly specified models, MinT Reconciliation does not improve or worsen the forecast accuracy

as the models are able to produce coherent structures of the time series, µt+h|t. This is in

agreement with Athanasopoulos et al. (2017).
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3.3. Uncertainty in G

The previous discussion shows that the accuracy improvement due to forecast reconciliation

depends on the quality of the estimated projection, SĜ. Since Ĝ is a function of Ŵt+h|t and

Ŵt+h|t depends on the model specification, Ĝ is stochastic. With regard to Eq (4), we can say

that the reconciled forecasts are the result of a linear combination of all base forecasts, in which

the weights are stochastic.

In order to deal with uncertain weights in Ĝ, we draw on the arguments from linear forecast

combination literature by Smith and Wallis (2009) and Claeskens et al. (2016). As Ĝ contains

the estimated weights, Smith and Wallis (2009) and Claeskens et al. (2016) note that estimated

combination increases the variance of the combined forecasts. Furthermore, in forecast pooling,

for any forecast added in the combination to be beneficial there are conditions on the forecast

variance (Kourentzes et al., 2019). In order to manage the uncertainty in forecast reconciliation,

it could be possible that not all parts of S are equally informative, i.e. these may increase the

uncertainty of Ĝ. This may explain the marginal improvements observed with cross-temporal

hierarchies, but more importantly it suggests that Ĝ could be restricted further.

A restricted Ĝ can be achieved by controlling the information which enters the forecast

reconciliation via Ŵt+h|t. Suppose that Ŵt+h|t is assumed to be a fixed covariance matrix, e.g.

an identity matrix, then the weights in Ĝ are fixed and constructed from S only. Alternatively,

we can include the sample variances and the covariances of the base forecast errors, but the

level of the randomness on the weights in Ĝ are subject to the uncertainty from the forecasting

models. A balance between these is to use the sample variances and manage the off-diagonal

elements, for example by shrinking the covariances or restricting them to zero. This may enable

us to balance the trade-off between more information and reducing uncertainty of the weights

in Ĝ. We note here that stochastic coherency is a general concept which can be applied to any

covariance matrix in forecast reconciliation. Fixed weights in Ĝ due to the identity covariance

matrix, or OLS reconciliation, is seen as a means to limit the uncertainty of Ĝ to zero. This

way, we can restrict the uncertainty propagation from the forecasting models to the reconciled

forecast uncertainty.

Stochastic coherency acknowledges two potential sources of uncertainty in forecast reconcil-

iation, originating from the modelling or the collection of data. We demonstrate that the main

source of uncertainty originates from the forecasting models. The uncertainty in the forecast-

ing model propagates to the estimation of the reconciliation weights matrix via the covariance
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matrix of the h-step ahead base forecast error and this affects the uncertainty of the reconciled

forecasts.

The difference between stochastic and deterministic coherency is not in the reconciled point

forecasts, but rather in the variability of the error distribution. Our stochastic interpretation

demonstrates that there is an increased uncertainty in the error distribution. In the following

section we use simulated and real data to show that our theoretical discussion of stochastic

coherency is observable in practice using the widely used MinT Reconciliation and can help

explain results in the literature.

4. Simulation Study

4.1. Experimental Design

In this section we perform two simulations: first, with a small hierarchy, controlling for

the model uncertainty, so as to validate the theoretical discussion above; second, with a large

hierarchy, as to see the effect of the hierarchy size.

We specify the data generating process of each bottom-level time series as an AR(1) process

for the small hierarchy:

bq,t = 0.4yq,t−1 + εq,t,

where q is an index from 1 to 4, denoting the bottom level time series in the hierarchy. The inno-

vation term εq,t = {ε1,t, ε2,t, ε3,t, ε4,t} and εb,t ∼ N (0,Σεb), where εb,t =

[
ε1,t ε2,t ε3,t ε4,t

]>
,

Σεb =



3 2 1 1

2 3 1 1

1 1 3 2

1 1 2 3


, and S =



1 1 1 1

1 1 0 0

0 0 1 1

I4


.

The top and middle level series result from the aggregation of the bottom-level, as presented

by S, where yt = Sbt and bt = {bq,t}. For example, yTop,t = 0.4(b1,t−1+b2,t−1+b3,t−1+b4,t−1)+

ε1,t + ε2,t + ε3,t + ε4,t. We simulate this setting with sample sizes of 24, 120, and 240 and a

burn-in period of 200, to eliminate any initialisation issues.

For the large hierarchy we use 50 bottom-level series, two levels in the middle-level and

a top-level time series. All bottom-level time series are generated from ARIMA with εb,50 ∼
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N (0,Σεb,50) and Σεb,50 is generated randomly at each iteration of the simulation. In both

simulations, we assume that δt = 0. For ARIMA we allow randomness in the data generating

process, i.e., the AR and MA orders are sampled from 0 to 3 and the integration is from 0 to 1.

We simulate the same sample sizes as for the small hierarchy with the same burn-in setting.

4.1.1. Forecasting Models

For the small hierarchy, we generate individual base forecasts using different model specifi-

cation settings, summarised in Table 1. The first option, referred to as DGP, assumes that we

know the process fully. The second option assumes the model structure is known, but the model

is subject to parameter uncertainty. We call this AR(1). The third option employs ARIMA with

automatic model selection, named as AutoARIMA, which has potentially reduced model uncer-

tainty and parameter uncertainty, as the data generating process is encompassed. The fourth

option uses exponential smoothing and represents a mis-specified model by using ETS(AAN)

that is equivalent to ARIMA(0,2,2), introducing superfluous terms. For the large hierarchy, we

use ARIMA and exponential smoothing with automatic selection. These match the latter two

options in Table 1. We produce 1- to 6-step ahead base forecasts for both hierarchies. For each

combination of sample sizes, forecast horizon, and model specification scenario, we repeat the

simulations 1000 times. ARIMA and ETS models are implemented using the auto.arima() in

the forecast package (Hyndman et al., 2019) and the es() in the smooth package (Svetunkov,

2019) for R (R Core Team, 2018), and we rely on Akaike Information Criterion for selecting the

appropriate model form.

Models DGP AR(1) AutoARIMA ETS

Specification Known Known Approximated Wrong
Parameter Known Estimated Estimated Estimated

Table 1: Model specification for each scenario in the experimental design

4.1.2. Forecast Reconciliation

We reconcile the base forecasts using the MinT Reconciliation methodology. We use several

approximation methods for Ŵt+h|t from the literature, summarised in Table 2. Hyndman et al.

(2011) use a diagonal covariance matrix with equivariant variances, they call this method OLS.

Athanasopoulos et al. (2017) propose Structural Scaling (SCL), where they set equal variances to

the bottom-level, and then calculate the covariance matrix as Sσb. In this case, σb = cIm, where

c is a scalar and m is the number of the bottom-level time series. Hyndman et al. (2016) propose
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WLS, which uses a diagonal covariance matrix allowing for heterogeneity. Wickramasuriya et al.

(2019) propose MinT-Sample, a fully unrestricted estimated covariance matrix of one-step ahead

in-sample base forecast errors. This method is denoted here as EMP. However, as it is difficult

to estimate the off-diagonals, they implement shrinkage on the off-diagonals towards zero by

Schäfer and Strimmer (2005), called MinT-Shrink method. This is denoted SHR in Table 2.

Estimation OLS SS WLS SHR EMP

Approximation cI Sσb Ŵd,t+1|t Ŵ SHR
t+1|t Ŵt+1|t

Ĝ ĜOLS ĜSCL ĜWLS ĜSHR ĜEMP

Table 2: Different approximations of Wt+h|t

Apart from the established covariance matrix approximations, we explore three alternative

covariance matrices, motivated by our theoretical discussion. Our motivation is to either con-

struct them from the bottom-level or by ignoring some of the off-diagonals in order to mitigate

the uncertainty, instead of estimating the whole covariance matrix. A similar study was done by

Nystrup et al. (2020) who exploited autocorrelations between time series in temporal hierarchies.

Furthermore, we provide a covariance matrix approximation continuum.

Figure 2 illustrates the covariance matrix approximations. In the first method we collect

a vector of the bottom-level variances from one-step ahead in-sample forecast errors, σ̂b, and

construct the covariance matrix with the variances of Sσ̂b. We call it cWLS. Second, we

estimate the bottom level covariance matrix and construct it according to the hierarchy. We

force a block diagonal structure, making other elements zero and shrinking the remaining, named

bShrink. Third, we estimate MinT-Shrink and retain the bottom-level covariance matrix. Then

we aggregate it to the hierarchy and force covariances between the bottom-level and the upper-

levels to be zero. We call this pShrink. We sacrifice information utilisation on bShrink and

pShrink by forcing hierarchically block diagonals to mitigate the variability of the forecast error.

Figure 3 depicts the covariance matrix approximation continuum. It represents the util-

isation of information with regards to the forecast error variability. On the left side of the

continuum, OLS provides the least information as Ĝ is constructed from the hierarchy only.

However, it produces the least variable forecast error. Beside OLS, there are SCL and WLS.

They provide more information than OLS by allowing heteroscedasticity. Consequently, they

produce more variable forecast error than OLS.
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Figure 2: Illustration of covariance matrix approximations for a hierarchy of seven time series. It consists of four
bottom-level, two middle-level, and a top-level time series. S on the upper-level of pShrink is constructed, then
shrunk. All covariance matrix approximations are positive definite, except bSHR and EMP. bSHR is a positive
semi-definite covariance matrix and the positive definiteness of EMP here depends on the sample (Hyndman
et al., 2011)

On the right hand side of the continuum, EMP provides full information as we estimate

the unrestricted covariance matrix. Consequently, EMP will produce the most variable forecast

error. Next to EMP, SHR provides full information with some restrictions, thus produces less

variable forecast error than EMP.

Our alternative covariance matrices fill the gap between WLS and SHR. We sacrifice some

correlations to manage the variability. We retain the correlations between the parent nodes

and the children nodes, but we dismiss the correlations between the parent and the children

from different parent nodes, and vice versa. By constructing the covariance matrix from the

bottom-level information, it is expected to produce less variable forecast errors, but have a

similar performance with SHR in terms of forecast accuracy.

18



Least 
 Information

Full 
 Information

Least 
 Variability

More 
 Variability

O
LS

S
C

L

cW
LS

W
LS

bS
H

R

pS
H

R

S
H

R

E
M

P

Figure 3: Covariance matrix approximation continuum againts information used and forecast error variability for
the whole hierarchy. Square points denote the alternative covariance matrix approximations

4.1.3. Error Metrics

We consider two different measures in hierarchical forecasting: (a) a measure which aligns

to the objective function (Wickramasuriya et al., 2019; Panagiotelis et al., 2020, 2021); (b)

a measure which is more relevant to decision makers (Kourentzes and Athanasopoulos, 2019;

Athanasopoulos and Kourentzes, 2020). The former deals with measuring the average accuracy

of base and reconciled forecasts across the complete hierarchy. The latter measures performance

of individual time series and then summarises them across the complete hierarchy. A rele-

vant discussion about the evaluation of hierarchical forecasts is given by Athanasopoulos and

Kourentzes (2020).

We focus on the mean squared error (MSE) for each time series i, as

MSEi,h =
1

J

J∑
j=1

(yij,t+h − ŷij,t+h|t)
2,

where J is the simulation run. Then, we measure the performances across the hierarchy from

the loss function perspective, using Relative Total Squared Error:

RelTotSEh =

∑n
i=1MSEih,recon∑n
i=1MSEih,base

,

where n is the number of time series in the hierarchy. Essentially, RelTotSEh measures the

relative accuracy between SSErecon and SSEbase. From the decision-focused perspective, we use
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Average Relative MSE, inspired by Davydenko and Fildes (2013):

AvgRelMSEh =

(
n∏

i=1

MSEih,recon

MSEih,base

) 1
n

.

4.2. Findings: Small Hierarchy
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Figure 4: Distributions of RelTotSE (TSE) for the small hierarchy and the sample size of 24. The red dotted lines
denotes the geometric average of each error distribution. The red arrows show that some parts of the distribution
are not plotted. Outliers are denoted by grey dots.

Figure 4 and 5 present the distributions of RelTotSE and AvgRelMSE for different fore-

casting models and covariance matrix approximations for the sample size of 24. Each pair of

subplots corresponds to a modelling case from Table 1, where the first subplot provides t + 1

error distributions, while the second provides the average across t + 1 to t + 6. The red lines

indicate the geometric mean. Furthermore, in all plots, arrows at the top and at the bottom

indicate that there are outliers and a part of the distribution is not plotted. Note that the co-

variance matrix approximations are ordered by its completeness of the information, i.e. from an

identity matrix to utilising variances and covariances fully to estimate the reconciliation weights
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matrix.

From Figure 4, for RelTotSE, we can see that when we have perfectly-specified forecasting

models, there is no gain from reconciliation. That is because the models are able to produce

coherent forecasts. As the base forecasts are coherent already, the reconciled forecasts are the

same as the base forecasts.

However, once we introduce modelling uncertainty, we gain some benefit from forecast

reconciliation. Imposing parameter uncertainty only, i.e. employing estimated AR(1), induces

relatively small gains from reconciliation. This shows that as the modelling uncertainty increases

reconciliation provides gains but again at an increased variability, meaning that the mean of the

relative errors decreases, but the variance of error measure distributions increases. The relative

accuracy gain is more noticeable when we use AutoARIMA compared to AR(1), at the cost

of higher variability of RelTotSE. Using ETS we benefit the most from forecast reconciliation,

but also at the cost of the highest error variability among other modelling options. These gains

are less pronounced when the multi-step base forecast errors are introduced, even though the

variances are non-zero.

Looking at the covariance matrix approximations, the results verify Theorem 3.1 by Pana-

giotelis et al. (2021) that OLS reconciliation improves or matches the accuracy of base forecasts

regardless the model specification. However, when we approximate the covariance matrix, it

is possible to get less accurate reconciled forecasts on some observations, as uncertainties are

introduced. We can see that some distributions go well beyond the accuracy of base forecasts.

As expected the simpler the approximation of the covariance matrix is, the less the variability

is, and vice versa. Our proposed covariance matrix approximations, e.g. cWLS, pSHR, and

bSHR, are able to reduce the variability of RelTotSE yet provide relative accuracy, on average,

similar to WLS and SHR.

In Figure 5 the model specification does not affect the accuracy improvement much, but

affect the variability of the relative measure, for AvgRelMSE. We can see from the figure that

the variability increases as the forecasting models become increasingly mis-specified.
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Figure 5: Distributions of AvgRelMSE (MSE) for the small hierarchy and the sample size of 24. The red dotted
lines denotes the geometric average of each error distribution. The red arrows show that some parts of the
distribution are not plotted. Outliers are denoted by grey dots.

Here, the effect of the covariance matrix approximations differ from RelTotSE. For Av-

gRelMSE there is no clear increase in error variability as more complete covariance matrix

approximations are used. However, the simplest covariance matrix approximation results in

very variable performance. This can be explained by considering that another role of the covari-

ance matrix in forecast reconciliation is to scale the reconciled forecast errors. At more aggregate

levels of the hierarchy the scale of errors increases. Conversely SHR is able to scale the forecast

errors better than OLS. The same is true for the other approximations. This argument aligns to

the discussion on temporal hierarchies where SCL performs well (Athanasopoulos et al., 2017).
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by grey dots.

Figure 6 presents the effect of sample sizes using mis-specified models with RelTotSE. For

RelTotSE, the benefits of forecast reconciliation reduce as the sample sizes increase, together

with the decrease of the variability. As the estimation of the parameters improves, the uncer-

tainty reduces, and therefore this result is expected. We can see this effect by looking at the

lower error bars. Nevertheless, we still observe some variability in longer sample sizes.

Regardless of what error metrics is used, we observe variability in the performance of

forecast reconciliation. For example, we observe a trade-off between accuracy and variability

of RelTotSE, i.e. the more complete covariance matrix is, the more accurate the reconciled

forecasts are. This, however, comes at a cost, which is introducing more error variability.

4.3. Findings: Large Hierarchy

Next we discuss the findings from the large hierarchy. Table 3 presents a comparison

between the small and the large hierarchy, with RelTotSE and AvgRelMSE for one-step ahead
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forecast and different sample sizes. We present the geometric mean and the logarithm of geomet-

ric standard deviation of the relative error distribution from ETS only. A negative (positive)

number denotes an improvement (deterioration) on the error measure. The bold highlights

the most accurate reconciliation approach, for the geometric mean, and the least volatile rec-

onciliation approach, for the standard deviation. All numbers in the geometric mean are in

percentages.

Statistics Geometric Mean (%) Geometric St. Dev. (log)

Hierarchy Small Large Small Large

Sample 24 240 24 240 24 240 24 240

RelTotSE

OLS -3.8 -1.2 -7.4 -3.4 6.1 2.7 10.1 4.0

SCL -5.7 -1.4 -18.6 -13.5 12.7 4.9 22.9 15.7

CWLS -5.7 -1.4 -17.4 -13.0 12.8 4.9 21.4 15.3

WLS -6.8 -1.4 -18.4 -15.3 17.8 7.0 25.4 19.8

pSHR -6.5 -1.2 -18.4 -14.6 16.5 5.4 25.4 18.2

bSHR -6.2 -1.4 -21.8 -16.8 14.7 5.4 29.8 23.3

SHR -8.0 -2.6 -18.3 -18.4 20.9 11.8 25.5 29.4

EMP -3.5 -2.3 293.2 -11.1 44.7 17.5 119.2 51.0

AvgRelMSE

OLS 0.9 -0.6 12.6 10.8 13.1 6.1 33.5 29.9

SCL -0.9 -0.7 2.3 2.4 7.6 3.1 25.8 23.6

cWLS -0.9 -0.7 -0.4 -0.4 7.8 3.1 19.4 17.9

WLS -1.8 -0.7 -1.0 -1.5 6.8 2.3 18.6 16.9

pSHR -1.6 -0.4 -1.0 -1.2 6.9 3.5 18.6 17.1

bSHR -1.2 -0.7 -1.5 -1.4 7.6 3.0 19.4 17.8

SHR -3.1 -1.9 -0.9 -2.6 11.5 8.0 19.3 15.9

EMP 1.6 -1.7 1730.7 3.3 34.8 13.1 156.1 26.7

Table 3: A comparison between the small and the large hierarchy with RelTotSE and AvgRelMSE for one-step
ahead forecast. A negative (positive) number denotes an improvement (deterioration) of the error measure, on
average. Numbers in bold highlight the smallest numbers.

Considering the geometric mean of RelTotSE and AvgRelMSE, SHR outperforms the other

alternatives, apart from the case of small sample size for the large hierarchy, where bSHR is the

best. We find that pSHR ia also competitive. As expected EMP is very sensitive to estimation

uncertainty. The increased size of the hierarchy substantially reduces its performance, while

increasing the sample size helps.

In terms of the standard deviation of RelTotSE, we observe similar findings to the small

hierarchy, where OLS is the least variable, while EMP and SHR are the most volatile. Overall,

as the completeness of the covariance matrix increases, so does the variance of the errors. The

larger size of the hierarchy increases it further, requiring more terms to be estimated, while
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sample size helps. On the other hand, for AvgRelMSE, the least variable methods are between

WLS, pSHR, and SHR, which have more complete information than OLS does.

The differences between RelTotSE and AvgRelMSE can be largely explained by the chang-

ing scale across the levels of the hierarchy. Improvements in the top-level dominates RelTotSE,

which is scale dependent. On the other hand, the scale independent AvgRelMSE balances

the gains across all levels, and therefore differences are less pronounced. It is important to

consider both views. The RelTotSE matches the operation performed by MinT Reconciliation

and directly demonstrates the effects of uncertainty highlighted by the stochastic coherency.

Furthermore, although on different scales, both RelTotSE and AvgRelMSE indicate that hi-

erarchical forecasting is beneficial in terms of accuracy. As evidence, as the complexity of the

covariance matrix approximation increases, so does the variance of the errors, in agreement with

our theoretical discussion.

5. Forecasting A&E hospital admissions

We apply our understanding of stochastic coherency to Accident and Emergency (A&E)

admission data in a hospital in the United Kingdom. Hospitals in the UK, as is the case

globally, face increased pressure due to the global pandemic, requiring many resources. This

has often caused disruptions in their normal operations, such as scheduled surgeries, but also in

the operations of their A&E departments. To this end, it is important to have reliable forecasts

of demand, across the different groups of interest, so that the hospital can allocate resources

best. In normal conditions, A&E forecasting is important in the United Kingdom due to the

worrying mismatch between the hospital service quality and financial efficiency (Limb, 2014).

Forecasts can be useful for multiple decisions, such as staff scheduling, procurement of drugs

and other medical supplies, bed utilisation, etc.

The time series consists of 64 bottom-level time series, which are structured according to

age (under 3 years old, between 4-16 years old, between 17-74 years old, and more than 75

years old), gender (male; female), and disposal type (admitted, discharged, referred to clinics,

transferred, died, referred to health care professionals, left, and others). Figure 8 provides a

plot of representative time series from the A&E hospital admissions dataset. There are multiple

ways to aggregate from the bottom-level time series to the total number of admissions, for

example aggregating by gender, age, or type first, and then across one of the remaining two

characteristics, and so on. This results in a grouped hierarchy of 135 time series with eight
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distinct groups/levels. A map of the hierarchy is presented in Figure 7. Note that some time

series in the bottom-level are sparse and these pose challenges in the modelling.

      Age/Sex/Type 64 series

Age/Type 32 series

      Sex/Type 16 series

Sex/Age 8 series

Type 8 series

Age 4 series

Sex 2 series

Total 1 series

Figure 7: Map of the A&E admission hierarchy. Labels on the left indicate the nature of time series at each level,
while on the right provide the number of time series at that level. The lines indicate how the time series are
aggregated between the different levels.

We have been provided weekly data from January 2009 to October 2019. We produce

from 1- to 4-step ahead base forecasts with two sets of in-sample data. The longer set uses 536

weeks, while a much shorter set has only 100 weeks. The second introduces additional modelling

uncertainty as the number of time series is larger than the number of observations making the

approximation of the covariance matrix challenging. This helps us validate our findings from

stochastic coherency on real complex hierarchical time series. For both cases we use the same

test set of 29 weeks, allowing for 25 rolling origin forecasts.
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Figure 8: Representative time series of A&E hospital admissions dataset for total, elderly, and admitted male
infant group. We observe that the time series exhibit seasonal patterns, local trend, and outliers.

Afilal et al. (2016) point that the A&E admission data can be structured in a hierarchy

according to the patients’ characteristics, which may be correlated. Athanasopoulos et al. (2017)

use ARIMA to model UK A&E admission data, but at a country level. Forecasting models can
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also incorporate exogenous variables, such as special events, holidays, and temperatures, to

improve forecast accuracy using regression models, ARIMA, or ETS (Kam et al., 2010; Xu

et al., 2016; Rostami-Tabar and Ziel, 2020).

We use ARIMA and ETS with automatic model selection, as setup for the large simulation

above. We acknowledge that these can be prone to model misspecification problems. First, we

omit important information for A&E forecasting, such as special events. Second, we do not

treat differently the any sparse time series at the bottom level of the hierarchy. This potential

misspecification is of interest, to explore how the reconciliation approaches impact the fore-

casts. Thirdly, the automatic ARIMA function on forecast package does not capture seasonality

while some time series are seasonal. We reconcile base forecasts using all covariance matrix

approximations, as in Figure 2 and evaluate the forecasts using RelTotSE and AvgRelMSE.

Statisics Geometric Mean (%) Geometric St. Dev. (log)

Model ETS ARIMA ETS ARIMA

Sample Short Long Short Long Short Long Short Long

RelTotSE

OLS -0.90 -0.70 -1.40 -3.10 0.50 0.60 0.70 2.30
SCL -0.90 -2.70 -2.20 -7.10 3.70 3.50 7.20 5.90
cWLS -0.70 -2.60 -3.10 -7.40 3.10 2.90 6.90 5.00
WLS -0.90 -3.10 -2.90 -7.90 4.30 3.70 8.00 6.20
pSHR -1.40 -3.30 -2.90 -5.60 4.90 3.30 8.40 4.50
bSHR -1.10 -3.10 -1.30 -6.20 5.90 4.80 9.20 6.30
SHR 0.80 -6.60 0.30 -11.30 5.80 8.00 9.90 9.20
EMP 55.20 -6.90 64.50 -2.60 43.50 41.40 39.90 32.60

AvgRelMSE

OLS 0.30 1.40 1.20 1.30 3.40 3.50 4.40 7.70
SCL -2.20 -1.60 -1.50 -1.50 2.70 3.00 3.70 4.70
cWLS -2.00 -1.50 -2.30 -2.90 2.60 3.40 3.70 4.80
WLS -2.70 -2.00 -2.40 -3.10 3.40 3.30 4.20 4.60
pSHR -3.50 -2.30 -2.70 -1.60 3.80 3.80 4.50 6.30
bSHR -3.20 -2.30 -1.70 -1.60 4.00 3.60 4.60 5.70
SHR -1.30 -5.00 -1.20 -7.00 4.00 5.80 5.50 7.50
EMP 65.40 2.20 51.40 -0.20 35.30 31.70 27.80 27.10

Table 4: A comparison between AutoARIMA and ETS models for the sample size of 100 and 536, over 1-4 step
ahead forecast. A negative (positive) number denotes an improvement (deterioration) of the error measure, on
average. Numbers in bold highlight the best performing results.

Table 4 presents a comparison between ARIMA and ETS models for the short and long

samples, for all covariance matrix approximations. Similar to Table 3, we present summary

statistics of the error distribution, with the geometric mean and the logarithm of the geometric

standard deviation. The results are ordered in terms of completeness of the covariance matrix

approximation.
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We note that across all results, the more complete covariance matrices, such as the pSHR,

and SHR, offer good forecast accuracy. First, we focus on the cases of the short in-sample set.

We find that pSHR performs overall best. For RelTotSE and ARIMA the cWLS is best but

closely followed by pSHR. We note that the more complete approximations (SHR and EMP)

perform poorly in terms of RelTotSE, while for AvgRelMSE the SHR improves upon the base

forecasts, but still performs worse than all simpler approximations.

The results for the large sample are contrasting. The SHR performs best. In the case of

RelTotSE and ETS we observe that EMP outperforms all alternatives, although closely followed

by SHR. The long sample size allows for reliable estimation. We note that the less complete

covariance approximations, although perform worse, all improve upon the base forecasts.

Looking at the standard deviation of the forecast errors, OLS provides the most stable rela-

tive accuracy for RelTotSE, and SCL together with cWLS for the AvgRelMSE. Overall, simpler

covariance approximations exhibit a low standard deviation of the forecast errors. More com-

plete ones, such as the SHR and EMP, exhibit increased deviations, even for the long in-sample

set. The proposed covariance matrix approximation, namely cWLS, pSHR, and bSHR, they

enable us to compromise between the accuracy gain and the variability of the error distribution.

The results in Table 4 are relative to the base forecasts and do not permit a direct com-

parison between ETS and ARIMA, as this is not the aim of the evaluation. If we compare the

two, we find that the reconciled forecasts from ARIMA outperform the ones from ETS for small

sample sizes, and vice versa.

Therefore, we argue that with complex data generating processes, observed in real data, we

again find variability in the performance of forecast reconciliation, especially when we need to

estimate the covariance matrix approximation, instead of relying on fixed values. This empha-

sises the importance of stochastic coherency to be considered in the application of hierarchical

forecasting. For the particular case of A&E hospital admissions, we find that the pSHR co-

variance approximation that was developed with the understanding we gained from stochastic

coherency resulted overall in good forecast accuracy, and stability. The performances of cWLS

and bSHR were similar. As a group these performed well against approximations from the liter-

ature that were either too restrictive or they did not consider the additional uncertainty arising

from stochastic coherency.
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6. Conclusions

Stochastic coherency shifts our paradigm from deterministic to stochastic forecast reconcil-

iation. We have to deal with the uncertainties in estimating the reconciliation weights matrix,

originating modelling uncertainty due to limited sample size. This directly affects the perfor-

mance of the forecast error, either on average or its variability, due to the approximation of the

covariance matrix.

Our findings show that there are two sources of uncertainty in forecast reconciliation orig-

inating from modelling, namely the base forecast uncertainty and the reconciliation weight

uncertainty. It becomes obvious that the base forecast uncertainty is carried forward to the

reconciled forecast uncertainty. Model and parameter uncertainty contaminate the covariance

matrix approximation and introduce the second source of error. Naturally, the sample size af-

fects modelling uncertainty. Moreover, a larger hierarchy produces more uncertain reconciled

forecasts, as there are more terms to estimate. These become evident with stochastic coherency

and the results from both simulated and real data corroborate with this understanding.

Due to these uncertainties, we cannot say that forecast reconciliation improves the accuracy

consistently all the time. Our findings show in some cases that the reconciled forecast accuracy

can be worse than the base forecast accuracy in some cases, even if on average it ranks better.

In relation to different model specifications, there are some conditions when the degree

of specification affects the efficacy of forecast reconciliation. As stated previously, if the fore-

casting models capture the bottom level data adequately, stochastic coherency indicates that

the bottom-up approach is sufficient, and reconciliation will not add value. For instance, our

simulation demonstrates that by having perfect information, the models can estimate coherent

mean and errors, hence forecast reconciliation does not change anything. When the modelling

uncertainty is limited, we obtain limited gains from forecast reconciliation. However, when we

have mis-specified models, forecast reconciliation becomes useful, which matches typical cases

in reality.

The benefit of forecast reconciliation appears when there are modelling uncertainties. The

MinT Reconciliation reduces the forecast error by redistributing the modelling uncertainty,

which contains the uncertainty of parameter estimation as well as the unobservable statistical

discrepancy, across the hierarchy. As long as the data generating process is unknown and the

forecasts are produced from individual forecasting models, the MinT Reconciliation can help.

Here we did not explore the effect of statistical discrepancy and it should be explored further in
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future work.

We also observe a significant accuracy improvement when forecast error covariances are

incorporated into the estimated reconciliation weights matrix. Even though it improves the

forecast accuracy generally, it comes at the cost of increased variability of the error measure.

One of the solutions to deal with the variability is to obtain a good quality reconciliation weights

matrix, which reduces the effect of modelling uncertainty. We can obtain this by managing

variances and covariances on the estimated h-step ahead covariance matrix and this determines

the quality of the combination weights estimation in the estimated reconciliation weights matrix.

A weaker argument for this is given by Kourentzes and Athanasopoulos (2019).

We can estimate a useful reconciliation weights matrix from approximating the base forecast

error covariance matrix. Simple and fixed approximations of the covariance matrix, namely OLS

and SCL, are immune to modelling uncertainty and the fixed estimation of the reconciliation

weights matrix is able to limit the variability of the error measure. On the other extreme, the

estimation of EMP and SHR relies heavily on the base forecast errors, and is prone to modelling

uncertainty. Consequently, the reconciliation weights matrix becomes uncertain. SHR relying

on shrinkage remains widely useful, while EMP is useful only for a very large estimation sample

size.

Managing the off-diagonals in the covariance matrix construction enables to balance the

accuracy gain and the variability of the forecast error. We argue that using bSHR and pSHR

are potential solutions, because they introduce restrictions, yet maintain structurally important

information. Our findings also show that bSHR and pSHR results in a similar accuracy gain,

but less variable to SHR, while being competitive to the simpler WLS and cWLS. Naturally,

this is important in applications of hierarchical forecasting, where both aspects of accuracy and

reliability over time are important. We find strong evidence of this when we model accident

and emergency admissions for the UK hospital of our case study, where the covariance matrices

developed with our understanding of stochastic coherency performed very competitively, offering

a good balance between accurate and stable forecasts. We argue that these can aid decision

making. Naturally, less variable forecasts are beneficial widely for operations. For example, in

a production setting less erratic forecasts result in more resilient plans and lower costs (Sagaert

et al., 2019). Similar examples can be drawn from inventory management, where maximum

accuracy forecasts do not necessarily result in the best inventory performance (Kourentzes et al.,

2020).
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Our discussion extends to probabilistic hierarchical forecasting. The literature does not

take into account modelling uncertainty (Jeon et al., 2019; Taieb et al., 2020). The density

of the reconciled forecasts is also affected by the reconciliation weights matrix and so is their

performance. Future research on this area will help highlighting the exact influence of modelling

uncertainties on probabilistic hierarchical forecasting.

In conclusion, we introduce stochastic coherency to overcome a limitation in the definition

of classical coherency in forecast reconciliation and hierarchical forecasting. Using the concept

of stochastic coherency, we give more attention to the error term from the data generating pro-

cess. We are able to demonstrate that stochastic coherency is relevant to forecast reconciliation

via simulations and a case study of A&E admissions in a hospital. It allows us to explain ob-

servations from the literature, where well performing approximations for the covariance matrix

introduce variability in the error distribution, and provides a framework to consider the setup

of hierarchical forecasting in applications.
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