Tag Archives: R

Tutorial for the nnfor R package

The nnfor (development version here) package for R facilitates time series forecasting with Multilayer Perceptrons (MLP) and Extreme Learning Machines (ELM). Currently (version 0.9.6) it does not support deep learning, though the plan is to extend this to this direction in the near future. Currently, it relies on the neuralnet package for R, which provides… Read More »

R package: tsutils

The tsutils package for R includes functions that help with time series exploration and forecasting, that were previously included in the TStools package that is only available on github. The name change was necessary as there is another package on CRAN with the same name. The objective of TStools is to provide a development and… Read More »

nnfor on github

I have put up a github repository for the nnfor package for R: https://github.com/trnnick/nnfor I will be putting updates and fixes there, before they are pushed on CRAN. You can also report there bugs. You can install the current github version with: Related PostsCan neural networks predict trended time series? MAPA package for R on… Read More »

New R package nnfor: time series forecasting with neural networks

My new R package nnfor is available on CRAN. This collects the various neural network functions that appeared in TStools. See this post for demo of these functions. In summary the package includes: Automatic, semi-automatic or fully manual specification of MLP neural networks for time series modelling, that helps in specifying inputs with lags of the… Read More »

Principles of Business Forecasting 2e

I recently got my hands on a physical copy of my new book: Principles of Business Forecasting (2nd edition). Ord, K., Fildes, R. and Kourentzes, N., 2017. Principles of business forecasting. 2nd ed. Wessex Press Publishing Co. I was invited by Keith Ord and Robert Fildes to join them in writing the much-revised 2nd edition… Read More »