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cDepartment of Business Administration, Universidad de Castilla-La Mancha, Ciudad

Real, Spain
dBirmingham Business School, University of Birmingham, Birmingham, UK.

Abstract

Inaccurate forecasts can be costly for company operations, in terms of stock-

outs and lost sales, or over-stocking, while not meeting service level targets.

The forecasting literature, often disjoint from the needs of the forecast users,

has focused on providing optimal models in terms of likelihood and various

accuracy metrics. However, there is evidence that this does not always lead to

better inventory performance, as often the translation between forecast errors

and inventory results is not linear. In this study, we consider an approach to

parametrising forecasting models by directly considering appropriate inven-

tory metrics and the current inventory policy. We propose a way to combine

the competing multiple inventory objectives, i.e. meeting demand, while

eliminating excessive stock, and use the resulting cost function to identify
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inventory optimal parameters for forecasting models. We evaluate the pro-

posed parametrisation against established alternatives and demonstrate its

performance on real data. Furthermore, we explore the connection between

forecast accuracy and inventory performance and discuss the extent to which

the former is an appropriate proxy of the latter.

Keywords: Forecasting, inventory management, optimisation, likelihood,

simulation

1. Introduction

In managing inventory it is critical to quantify the demand uncertainty,

typically encapsulated in forecasts of the demand over the lead time period.

There is an intuitive link between accurate forecasting and meeting the de-

mand. When the demand is unusually high, compared to the expected, i.e.

the forecast, it may result in a stockout, while when the demand is below

expectations, additional holding costs can arise. Nonetheless, whether a devi-

ation of demand from the expectation leads to a stockout or excess inventory

holding costs is conditional on the current stock on hand. Given sufficient

stock, a stockout can be averted, or equivalently by holding lower inventory

one can avoid unnecessarily high holding costs.

In a realistic setting, where the demand process is unknown, we rely

on forecasts to generate approximations of the expected realised demand

over the lead time. However, the generation of forecasts is often rather

disjoint from the needs of the forecast users. Forecasting methods, such as
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the exponential smoothing method, are typically optimised on the in-sample

mean squared errors (MSE), which when used as a cost function for the

parameter optimisation leads to optimal forecasts for the mean of the demand

process (Gneiting, 2011a). Similarly, when a model is present, we typically

use maximum likelihood estimation, which is again based on quadratic errors,

and therefore results in optimal forecasts for the mean of the demand process.

This ensures unbiased in-sample forecasts, however this does not guarantee

good out-of-sample behaviour (Barrow and Kourentzes, 2016), i.e. accurate

or unbiased forecasts. Alternative costs have been explored, such as the

mean absolute error (MAE, Gardner Jr, 2006), which are more robust against

outlying demand events. Absolute errors result in optimal forecasts for the

median of the demand process (Gneiting, 2011a). However, forecasts for

inventory management need not be solely optimal either on the mean or

median of the demand process.

In fact, there are two elements where classical cost functions fail in an

inventory management setting. First, they satisfy their conditions in-sample;

and second, inventory decisions are conditional on the inventory position and

the ordering policy, neither of which are accounted by MSE, MAE or sim-

ilar. Furthermore, these metrics do not consider asymmetric costs of over-

and under-stocking and the associated distributional assumptions. The first

point connects to the issue of over-fitting, where a sufficiently flexible model

may capture parts of the noise in the in-sample data, thereby harming the

out-of-sample performance. Assuming a fixed model form, as is the case with
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exponential smoothing, this will be reflected in the model’s parameters. If

the model form itself is flexible, this may manifest itself both in the terms

included in the model and the parameters’ values. The degree of difference

depends on how close the model is to the underlying data generating process,

which for any realistic case is unknown and typically more complex than the

forecasting models we use to approximate it. This is a well documented

problem and has led to extensive research in shrinkage estimators, such as

lasso regression (Tibshirani, 1996). More recently Kourentzes and Trapero

(2018) showed that multi-step ahead quadratic cost functions are a form of

univariate shrinkage, which will also mitigate the sampling effects on param-

eter estimation. Nonetheless, these approaches do not address the second

limitation discussed above.

In this paper we propose optimising the forecasts directly on the deci-

sion variable. Therefore, instead of relying on some metric of divergence

between the fitted values of the forecast functions and the observed histor-

ical demand, we conduct an inventory simulation and optimise the forecast

function parameters, so as to maximise the relevant inventory performance

metrics. This follows the ideas of Simulation Optimisation (Amaran et al.,

2016), which lends itself well when the problem at hand is stochastic and

there is uncertainty or very high complexity of the error surface. Following

the proposed approach, we minimise the difference between the target and

achieved service measures, given the inventory policy in place, accounting

for the inventory position and cost asymmetry of over- and under-stocking.
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Naturally, although the proposed approach aims to address the disconnect

between the forecast and inventory management objective, it introduces new

complications in the modelling process, which we discuss in this paper.

We evaluate the proposed optimisation on a real case with data from a

UK manufacturer of fast moving consumer goods, and demonstrate that the

proposed approach results in superior inventory performance, but inferior

forecast accuracy compared to conventional cost functions. Given that con-

ventional costs are designed to maximise forecast accuracy, particularly when

the cost is of the same order, for example quadratic, this is not unreasonable.

This is also in agreement with the observation in the literature, that the most

accurate forecast may not always have the best inventory performance (for

example see, Kourentzes, 2013, 2014, and references therein). Furthermore,

the proposed approach has the advantage that it offers a transparent con-

nection between the parametrisation of the forecasts and their use, which we

argue is appealing for practice.

The rest of the paper is organised as follows. Section 2 provides a sum-

mary of the background research on the connection between forecast accu-

racy, estimators and inventory performance. Section 3 outlines the proposed

approach, followed by Section 4 that presents the experimental design and

the results. Section 5 expands on the results, providing some insights into the

implications of using the proposed estimator, followed by concluding remarks

in Section 6.
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2. Research background

Although evaluation is paramount in the forecasting research, often this

is restricted to looking at the forecast accuracy, which is assumed to be a

reasonable proxy for the decisions that forecasts support (Ord et al., 2017).

Nonetheless, in the literature, there are papers that have questioned this

assumption, and arguing for directly using stock control metrics in the con-

text of inventory management (for examples see, Gardner Jr, 1990; Syntetos

and Boylan, 2005, 2006; Teunter and Duncan, 2009; Syntetos et al., 2010;

Kourentzes, 2013; Syntetos et al., 2015; Sagaert et al., 2018).

Substantial work has been done in the intermittent demand literature,

where forecast evaluation is problematic when using conventional error met-

rics (Kolassa, 2016). Kourentzes (2013) evaluates the use of neural networks

for intermittent demand forecasting and finds that although they are inferior

in terms of forecast accuracy, ranking almost last amongst the benchmarks

considered, the opposite result emerges when looking at inventory perfor-

mance metrics. Kourentzes (2014) similarly finds that seemingly differently

performing methods in terms of accuracy, result in insubstantial differences

when evaluated in inventory performance terms. These findings are in agree-

ment with aforementioned references in the intermittent demand literature,

raising the question whether forecasts optimal on typical cost functions add

considerable value to the subsequent decisions they support, and in particular

inventory decisions. Gneiting (2011b) discusses this issue further, pointing

that conventional forecast accuracy metrics are effective when we are forecast-
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ing the conditional mean (MSE) or median (MAE), and we should instead

consider quantile metrics.

Sanders and Graman (2009) explore the connection between forecasting

performance and the resulting decisions in depth. An interesting aspect

of this work is that they consider both the accuracy and the bias aspect

of forecasting performance. They find that bias has a substantially larger

impact on the performance of the subsequent decisions compared to accuracy.

For clarity, with the term accuracy we refer to summary statistics that report

the magnitude of forecast errors (such as the mean squared and absolute

errors), while with the term bias we refer to the under- or over-forecasting of

the demand (as captured by the mean error).

It is useful to consider the effect of minimising MSE when generating fore-

casts. Quadratic loss makes forecasts optimal for the mean of the demand

distribution (Gneiting, 2011a). At the same time, the bias-variance decompo-

sition indicates that minimising MSE results in minimising the variance of the

forecasts, as well as the in-sample squared bias (defined by the mean error),

resulting in in-sample unbiased predictors (Friedman et al., 2001). However,

anticipating the out-of-sample performance of MSE optimal forecasts is far

from straightforward. For example, Barrow and Kourentzes (2016) provide

evidence of how weak the connection is between in-sample and out-of-sample

forecast error, where their distributions can differ considerably. They proceed

to suggest that forecast combination is a potential remedy. Forecast combi-

nation can be perceived as shrinkage operator (Elliott et al., 2013; Kourentzes
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et al., 2018). This connects to the bias-variance trade-off, where the modeller

has the challenge of specifying a forecast that balances in-sample over- and

under-fitting, given that the true data generating process is unknown, so as

to achieve good out-of-sample performance (Friedman et al., 2001). Very

accurate in-sample forecasts, and by construction unbiased in-sample if they

are optimal on MSE, may be over-fitted. This results in poor out-of-sample

performance. Optimising forecast parameters on MSE, or similar cost func-

tions, does not come with any warnings of over-fitting, and it is left up to the

modeller to use a variety of model building diagnostics to detect the problem.

Therefore, we argue that the challenge of producing well performing forecasts

in the out-of-sample, particularly in terms of bias, largely falls on the way we

parametrise forecasts. Shrinkage approaches have gained popularity, as they

connect model specification and estimation in a single step, and make the

bias-variance trade-off evident to the modeller (Tibshirani, 1996; Friedman

et al., 2001). This motivates our proposed approach for alternative forecast

parametrisation, outlined in the next section.

3. Optimising directly on inventory performance

A high level overview of the proposed approach for estimating model

parameters is provided in the flowchart in figure 1. This resembles conven-

tional derivative free optimisation, but instead of minimising some historical

demand fitting error, at each iteration an inventory simulation is performed,

tracking some appropriate performance indicator, which is then used to evalu-
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ate the cost of the optimisation and inform further updating of the forecasting

model parameters or stopping the optimisation process.

Derivative free numeric optimisation algorithm

Initial model
parameters

Conduct inventory
simulation. Track

performance
indicators

Evaluate cost

No

Yes
Optimiser
stopping
criterion

Update model
parameters

Final
parameters

Figure 1: Flowchart of the proposed parameter estimation approach.

It is obvious that the modeller needs to provide the various details for

the simulation, such as the relevant inventory policy, lead times, and so on,

which are specified so as to match the realistic inventory decision that is faced

by the company. In contrast to typical simulation optimisation, in this case

there is minimal need for calibration, as inventory policies are well studied

processes. Typically the main sources of uncertainty are related to describing

the demand process and its uncertainty, which are the forecasting related

questions that we are trying to optimise in the first place. Other elements of

the simulation are provided by the business context, and depending on the

complexity of the business environment and the desired degree of realism,

this can often be captured with high certainty. Therefore, contrasting with

conventional parameter optimisation using MSE, the only difference in the

flowchart in figure 1 is in the top-left cell of the derivative free optimisation.

Using MSE we only need to fit the model to the historical data given the
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current parameters prescribed by the optimiser. With the proposed approach

we run an inventory simulation using the in-sample data.

It is useful to contrast the sample requirements for conventional time se-

ries modelling optimisation and the proposed one in terms of what it implies

for the resulting optimal parameters. When estimating the parameters of

a forecasting model or method, conventionally, we consider some summary

performance statistic, such as the MSE, which becomes the cost function

for the optimiser. The MSE is the sample fitting error variance, which es-

timates the unobserved error variance that we want to minimise, and since

it is a random variable we require an adequate sample to obtain a good es-

timate. At the same time, since the cost function is minimised when the

differences between the observed and the predicted values are minimised,

this becomes an approximation exercise. As the number of parameters of the

forecast function increase, then it can approximate the sample observations

with more flexibility. If it correctly describes the underlying data generating

process then, since the parameters are random variables themselves, addi-

tional sample data increases our confidence in the estimates. If the forecast

function has omitted terms, then there are limits to the quality of the ap-

proximation, which will become more evident as the sample size increases.

Alternatively, if there are additional terms, then the forecast function will

over-fit, however this effect will lessen as sample size increases, with the un-

necessary parameter estimates eventually converging to zero. In reality, the

underlying process is always unknown, and our forecast functions may have
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simultaneously omitted and superfluous terms.

Switching to the proposed simulation based optimisation, we still sum-

marise the performance using a performance metric, which itself is a random

variable. From that standpoint, additional sample data will increase the con-

fidence in the estimate, similar to the conventional case. However, the cost

function no longer prescribes an approximation exercise to the observed data

and, therefore, there is no direct connection between the model terms and the

sample size. Indirectly, a reasonable approximation of the data generating

process is still required, but one has to note that this is less straightforward

than in the conventional case. We argue that since the focus has shifted from

model fit to inventory performance, which itself is conditional on variables

such as stock on hand and any orders in the system, on top of the observed

demand per period. The latter is the only information considered when fit-

ting a model conventionally. This can result in different parameters and

resulting forecasts. For example, consider operational production planning,

where a consistent forecast across time may be more beneficial than a very

accurate, but volatile, forecast (Sagaert et al., 2018; Fildes and Kingsman,

2011). Nonetheless, if the quality of the forecast is very poor, then that im-

pacts negatively on operations. The exact transformation of the forecasts to

the decision can be rather complex, or even unknown, depending on the de-

cision. This is precisely when simulation optimisation is beneficial (Amaran

et al., 2016).

Specifically for the inventory management case, as the forecasts and their
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variance are used to inform re-ordering decisions and the amount of safety

stock, reducing the bias of the forecast becomes more important than ac-

curacy. A forecast that is very accurate in-sample, but gives biased out-

of-sample forecasts, can negatively impact inventory performance. On the

other hand, a less accurate forecast that remains fairly unbiased in the out-

of-sample can be preferable, even if the forecast function has omitted terms.

Similarly, this approach, as it is not minimising the approximation error, will

have less tendency to over-fit, even when unnecessary terms are included in

the forecast function.

A final important consideration is what should be the appropriate inven-

tory performance metric. Ideally, one should use the overage and underage

costs directly, however these are not always easy to obtain, particularly the

underage cost. Therefore, we can consider associated metrics, such as the

cycle service level and the fill rate. The cost in that case becomes the dif-

ference between the target and realised for the sample period. Both the

service level and the fill rate blend the overage and the underage cost into

a single metric, which effectively reduces a multi-objective optimisation to a

conventional single objective one.

In the following section we describe the implementation details of the

optimisation, and evaluate the proposed parametrisation against established

benchmark approaches, to demonstrate the merit of the idea.
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4. Empirical evaluation

4.1. Case study dataset

To evaluate the performance of the proposed parametrisation we use a real

case study. Our data originate from a UK manufacturing firm that specialises

in household cleaning and personal hygiene products. The company serves

retailers in the European market and has production facilities distributed

across the continent. They operate on a weekly inventory planning cycle and

their lead time is typically between 3 and 5 weeks.

Our dataset contains 229 items with 173 weekly sales each. After explor-

ing the sales we did not identify strong evidence of seasonality or trends. We

retain the last m = 52 weeks as a test set, to evaluate the resulting fore-

casting and inventory performance of the evaluated model parametrisation

alternatives.

4.2. Forecasting setup

Given the structure of the time series, we use local level exponential

smoothing, that is the state space model form of the popular single exponen-

tial smoothing method (Hyndman et al., 2002):

ŷt+h = lt, and h ≥ 1, (1)

lt = lt−1 + αεt, (2)
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where ŷt+h is the h-step ahead forecast from period t, lt the estimate of

the local level, α the smoothing parameter and εt ∼ N(0, σ). Observe that

the forecast ŷt+h is conditional on the observed sample up to period t, the

smoothing parameter α and the initial level l0, which corresponds to the

value of lt−1 when t = 1. The conditional demand over the lead time is

simply Ŷt+L =
∑L

i=1 ŷt+i, updated at every period. From the state space

framework, we can construct the expression for the conditional variance over

the lead time, L, given parameter α (Hyndman et al., 2008, p. 92):

VL = σ2L

[
1 + α(L− 1) +

1

6
α2(L− 1)(2L− 1)

]
. (3)

Here, L is constant and known, and any review time is included in it. Note

that equation (3) does not account for the uncertainty due to the estimation

of α. Prak et al. (2017) and Prak and Teunter (2019) show that for a small

sample size this can lead to high inventory costs, as the total uncertainty is

underestimated. However, when there is an adequate estimation sample, the

parameter uncertainty becomes sufficiently small to have minuscule impact.

Observe that (3) is based on the assumption that forecast errors are normally

distributed. Since we are interested in the cumulative demand over the lead

time, as the lead time increases, the central limit theorem becomes relevant

making the assumption reasonable. Nonetheless, there may be many cases in

which the deviations from normality remain strong. In these cases alternative

distributions, or empirical approximations, may be preferable. Trapero et al.
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(2019a) and Trapero et al. (2019b) discuss some of these alternatives and the

conditions under which they perform well.

We consider a number of alternatives to estimate the smoothing parame-

ter α and the initial level l0. Given the state space formulation we can derive

the likelihood and maximise it to obtain the optimal parameters given the

available sample. This turns out to be equivalent to the well known Mean

Squared Error, given the additive nature of the model innovations (Hyndman

et al., 2008, p. 69):

MSE =
1

n− 1

n−1∑
t=1

(yt+1 − ŷt+1)
2 , (4)

where n is sample size of the training set and yt the observed demand at

period t. Kourentzes and Trapero (2018) have argued, echoing similar views

by Xia et al. (2011) and Chatfield (2000), that maximising the likelihood

is meaningful given the assumption that the underlying model is true for

the demand process. This is often adequate for practical considerations.

However, when this assumption is strongly violated, minimising (4) will result

in model parameters that are adequate only for short term predictions (for a

discussion see Chatfield, 2000, Section 6.3). Kourentzes and Trapero (2018)

proceed to show that using multi-step cost functions can result in increased

forecast accuracy (also see empirical evidence by Clements and Hendry, 1998;

Pesaran et al., 2011), and results in a particular form of univariate parameter

shrinkage. This also mitigates the parameter estimation uncertainty. One
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can minimise the h-steps ahead forecast error, or the average of 1 to h-steps

ahead error, with the latter enforcing more aggressive shrinkage:

MSEt+h =
1

n− h

n−h∑
t=1

(yt+h − ŷt+h)2 , (5)

MSEt+1— t+h =
1

h

h∑
i=1

MSEt+i, (6)

Finally, considering that the requirement in inventory management is accu-

rate forecasts over the lead time, one can minimise these directly:

MSEt+L =
1

n− L

n−L∑
t=1

(
Yt+L − Ŷt+L

)2
, (7)

where actual demand over lead time Yt+L =
∑L

i=1 yt+i.

Finally, the last alternative we consider is to use the inventory simulation

approach we propose, where the cost function to be minimised is simply:

Cost = (p− p̂)2, (8)

where p is the target cycle service level and p̂ is the realised one, for the in-

sample period, based on an inventory simulation for given model parameters.

Given the model expression for the lead time variance (3), we need an

estimate for the σ, which given parameters α and l0 is:

σ̂ =
1

n− 2

n∑
t=1

(yt+1 − ŷt+1)
2. (9)
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We divide by n− 2 to account properly for the degrees of freedom.

We consider these four estimation approaches, alongside the proposed

one, to rigorously benchmark the performance of the inventory simulation

optimisation approach. Furthermore, this study provides the opportunity to

evaluate the impact of the alternative estimation approaches to the inventory,

which has not been done in the literature.

4.3. Evaluation setup

We consider lead times of 3 and 5 weeks and perform a rolling origin

evaluation. At every period we optimise the model parameters and produce

the relevant forecasts. Once this is done, we increase the sample by one

observation and repeat. This is repeated until all the test set is used. We

consider four forecasting performance metrics, two measuring the magnitude

of forecast errors and two the magnitude of bias. For each case, one metric

is recording the errors per period, and the other the cumulative errors over

lead time.

RMSEh =
1

m− h+ 1

n+m−h∑
t=n+1

√√√√1

h

h∑
i=1

(yt+i − ŷt+i)
2, (10)

RMSCEh =
1

m− h+ 1

n+m−h∑
t=n+1

√(
Yt+h − Ŷt+h

)2
, (11)

AMEh =

∣∣∣∣∣ 1

m− h+ 1

n+m−h∑
t=n+1

(
1

h

h∑
i=1

(yt+i − ŷt+i)

)∣∣∣∣∣ , (12)

AMCEh =

∣∣∣∣∣ 1

m− h+ 1

n+m−h∑
t=n+1

(
Yt+h − Ŷt+h

)∣∣∣∣∣ . (13)
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RMSE and AME are calculated on the trace forecast errors from t+1 to t+h-

steps ahead, for each m−h+1 forecast origins, where m is the sample size of

the test set. Likewise, RMSCE and AMCE are calculated on the difference

of the cumulative actuals and forecasts over the lead time, for each forecast

origin. Observe that AME and AMCE are measuring the same quantity, as

the summations of yt+i and ŷt+i in (12) can be rearranged to give (13). For

this reason we only retain AME in the discussion. These errors are scale-

dependent. We transform them to scale independent by dividing for each

time series the resulting metric for estimation method A with a benchmark

method B, for which we use the standard 1-step ahead in-sample MSE. These

ratios are then summarised across the q time series of the dataset using the

geometric mean:

RelMh =

(
q∏

i=1

MA
h

MB
h

) 1
q

, (14)

where Mh = (RMSEh,RMSCEh,AMEh). When the value of the relative

metric is below one the method A improves over the benchmark by (1 −

RelMh)100%.

Beyond the forecast performance metrics, we consider the inventory per-

formance of the alternative estimation methods by constructing an inventory

simulation. We impose an order-up-to policy and measure the outcome for

p = (90%, 95%, 99%) service levels, matching targets in the case study com-

pany. The range of p allows us to assess the performance of the proposed

optimisation approach in various common settings, given the difficulty in
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estimating implied stock-out and holding costs. The order-up-to level S is

calculated as:

S = Ŷt+L + Φ−1(p)
√
VL, (15)

where Φ−1(·) is the inverse of the cumulative normal distribution and VL is

calculated as in (3).

Note that (15) is the standard approach in an inventory management

setting (Silver et al., 2016), where we rely on estimations of the conditional

mean and variance of the demand over the lead time. An alternative ap-

proach would be to directly estimate the relevant quantile of the cumulative

distribution of the demand over the lead time, which can be done either

empirically (Trapero et al., 2019a) or by considering modifications in the op-

timisation of the forecasting models (Gneiting, 2011b). There are conditions

which make these alternatives attractive in calculating the order-up-to-level

S. Given that there is no clear dominance of a single approach, combina-

tion approaches have also been investigated (Trapero et al., 2019b). We do

not explore these approaches further here, as the conventional formulation

in (15) is adequate for our dataset.

We keep track of the realised service level, the stock-on-hand and the

stock-out, over the out-of-sample data, scaled by the observed in-sample

mean demand, to make these metrics scale independent. We then average

these across all time series in the dataset. Any unmet demand is considered

lost, which is a reasonable assumption for the products of the case company.
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4.4. Forecasting performance results

First, we report the forecasting performance of the competing estimation

approaches. Table 1 summarises the various forecasting performance metrics.

These are provided at an aggregate level across all time series, for the two

different forecast horizons. Note that there are three results for the estimation

based on the inventory simulation, one for each target service level. For

each horizon and each metric, the best performing estimation method is

highlighted in boldface.

Table 1: Forecasting performance metrics across the 229 items

Accuracy Bias

Cost function RelRMSE RelRMSCE RelAME

Horizon 3

MSE 1.000 1.000 1.000
MSEt+h 0.995 0.990 1.016
MSEt+1— t+h 0.994 0.987 1.060
MSEt+L 0.995 0.990 1.067
Inventory (90%) 1.033 1.086 0.678
Inventory (95%) 1.033 1.086 0.524
Inventory (99%) 1.062 1.157 0.376

Horizon 5

MSE 1.000 1.000 1.000
MSEt+h 0.995 0.987 0.968
MSEt+1— t+h 0.991 0.974 1.043
MSEt+L 0.994 0.980 1.108
Inventory (90%) 1.009 1.028 0.745
Inventory (95%) 1.008 1.031 0.632
Inventory (99%) 1.023 1.089 0.473

The results across the two horizons are qualitatively similar. In terms of

accuracy, irrespective if we focus at trace (RelRMSE) or cumulative (Rel-
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RMSCE) errors over the horizon, MSEt+1— t+h performs best, although only

marginally compared to the other MSE approaches. When we look at the

bias metrics, again for both cases, the inventory based estimation substan-

tially outperforms all MSE based alternatives. The reduction of bias from

the conventional MSE ranges between 25% to 60%. This is achieved with

only up to 9% reduction in accuracy. We anticipate this reduction in bias to

have a significant impact on the inventory performance.

Figure 2 provides violin plots of the three forecasting metrics, across

time series, for h = 3. The geometric mean performance for each estima-

tion method is indicated by a horizontal bar. The distributions have been

winsorized at 5% to improve clarity, which also explains the increased con-

centration of errors at the lower and higher values of the plots. We do not

provide the plot for h = 5, as it is similar qualitatively and does not provide

any additional insights. Also note that we provide a single set of results for

the inventory based estimator, by calculating the geometric mean across the

results for the different target service levels. We do that to avoid cluttering

the figure, while losing few insights. Inspecting the figure we can see that the

error distributions for both accuracy and bias metrics for the MSE variants

are almost identical, and are located around the benchmark MSE results.

This indicates that any differences lack significance. On the other hand, the

distributions for the inventory based parametrisation are substantially dif-

ferent, with the centre of these distributions significantly differing from the

MSE variants.
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Figure 2: Violin plots of forecasting performance using different optimisation criteria across
time series, for h = 3.

As we previously discussed, the forecasting performance metrics are not

well suited to assess the inventory relevant performance of the competing

forecasts. In the next subsection we proceed to report on the inventory

performance metrics that overcome this limitation.

4.5. Inventory performance results

We proceed to explore the performance in terms of inventory by means

of trade-off curves (Gardner Jr, 1990; Syntetos et al., 2015), as provided

in figures 3 and 4. The top-left subplot provides the scaled inventory on

hand against the service level deviation. We use the deviation to better

highlight cases of under- and over-coverage. Ideally, any curves should have

zero deviation and as little inventory as possible. Similarly, the top-right

plot provides the scaled out of stock against the service level deviation. The

bottom-left plot provides the trade-off curve between scaled inventory on
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hand and out of stock volume. In this subplot, the ideal solution would be

having zero out of stock, while holding minimal inventory, and therefore any

curves closer to the origin (0, 0) dominate those more distant.
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Figure 3: Inventory performance plots for h = 3.

Both figures 3 and 4 provide similar insights. The proposed inventory

simulation based parameter estimation results in the smallest deviation from

the target service level, with only limited increase of the stock on hand and

reduction of out of stock. This results in dominating trade-off curves over

all other estimators. Considering the benchmarks, note that the conven-

tional MSE based optimisation performs the worst, albeit with small differ-
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Figure 4: Inventory performance plots for h = 5.

ences from the remaining MSE variants. The superiority of the proposed

parametrisation is stronger for h = 5.

The inventory performance results follow the discussion of the forecasting

performance results, where the substantial gains in terms of out-of-sample

bias, with only minimal degradation of accuracy, are translated in superior

inventory performance as expected.
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5. Discussion

An advantage of MSE-based cost functions is that they typically result

in well behaved convex and differentiable error surfaces. In particular for the

local level exponential smoothing model they prescribe a globally optimal set

of α and l0 values, for given historical demand.

It is useful to explore the resulting error surface of the proposed optimi-

sation. We simulate the error surfaces for a time series of our case study, for

both MSE and the proposed cost, plotted in figure 5 using contours. The

resulting optimal set of parameters are provided as well. Observe how differ-

ent the two optimal solutions are. Although the MSE error surface is convex

and smooth, with a global minimum, this is not the case for the other cost.

The inventory based error surface is more complex, non-monotonic and has

multiple local minima. This makes the initial starting point of the optimiser

important, as poorly chosen sets of starting values can result in low quality

solutions. Figure 6 exemplifies this by providing the error surfaces for two

different time series, together with multiple starting points for the optimisa-

tion and associated end points, which are local minima. In the top subplot

we observe that most converge around the same solution. However, in the

second case, the large plateaus in the error surface result in many diverse

local optima. In fact, many of the poor initialisation points at the right

side of the subplot, associated with large α values, are not able to escape

the plateau at all. Our approach to avoid these issues was to initialise the

optimisation multiple times, as indicated in figure 6 that forces a thorough
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search of the solution space.
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Figure 5: MSE and inventory based error surfaces, together with optimal parameters.
Lighter colour denotes lower errors.

Beyond the specifics of the error surface, using an inventory simulation

based optimisation has further implications for the forecasting modelling

methodology. Although it is applicable to both model and method based

forecasts, using models is attractive as they provide analytical variance ex-

pressions that are needed for the calculation of safety stocks in an inventory

setting. Moreover, using model families is particularly helpful for selecting

the appropriate model specification, which is typically done by using infor-
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Figure 6: Inventory based error surfaces for two different time series. Multiple optimisation
starting points are indicated, together with the corresponding local minima. Lighter colour
denotes lower errors.

mation criteria, such as the Akaike Information Criterion (Burnham and

Anderson, 2003). However, these require that the likelihood of the model is

maximised. This is no longer the case, which makes model selection and spec-

ification using information criteria invalid. This limitation is also true for the

various other cost functions described in Section 4.2, and more widely in the

literature. There are various ways one could overcome this, also applicable

when we rely on method based forecasts, such as using cross-validated errors,

model combination and selection heuristics (for a discussion and comparison

27



of common approaches see Kourentzes et al., 2018), potentially enhanced by

domain knowledge (Petropoulos et al., 2018). How to best perform model se-

lection and combination is an open question that requires additional research,

with implications for the wider literature.

At this point we should note that the proposed simulation optimisation

approach will result in different model parameters, and therefore forecasts,

when the settings of the inventory system change. For instance, different

target service levels will result in different forecasts. Similarly, if we were

to change the various settings of an inventory policy, for example including

lost sales or not, this would also impact the resulting forecasts. This is in

contrast to the majority of the conventional forecast selection methodologies,

which are focused on the forecasted conditional mean. This is irrespective

of whether we are selecting a forecast using cross-validation, information

criteria (Kourentzes et al., 2019) or arguably even judgement (Petropoulos

et al., 2018). We argue that this is a benefit of the purposed optimisation

approach, as it considers the various feedback loops in the inventory policy,

tied to the stock levels, the implicit over- and underage costs and so on that

are omitted by the conventional approaches.

6. Conclusions

In this paper we proposed to parametrise forecasting models using a cost

function inferred directly from the inventory decisions, instead of minimising

the fitting error on past historical demand, as is the norm. We found that
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this resulted in lower forecast accuracy than conventional quadratic loss func-

tions, which is not surprising. The loss in terms of accuracy was as high as

9%. However, there were substantial gains in terms of out-of-sample forecast

bias, of up to 62% improvement. When translated to inventory performance,

the proposed cost function achieved minimal differences between the target

and realised service levels, in contrast to the benchmarks. Furthermore, the

resulting out of stock-inventory on hand trade-off curves dominated other

alternatives.

The inventory gains come at a cost of a more difficult optimisation prob-

lem. We demonstrate that the resulting error surfaces have multiple local

minima and large plateaus, and suggested using multiple starting points for

the optimiser to achieve an effective search of the solution space. It is of

interest to explore alternative optimisation strategies that may result in a

more efficient parameter space search.

An attractive property of the simulation optimisation approach that we

propose for setting the parameters of the forecasting models is that we can

incorporate a wide variety of inventory management setups. For instance,

in our case company we considered any unmet demand to be lost. This

can easily be modified as needed for different cases. Similarly, while we

used an order-up-to policy, this is not a necessity and different policies can

be incorporated. Focusing on demonstrating the efficacy of the proposed

parameter optimisation approach, we retained many of the classical elements

of the order-up-to policy, such as assuming normally distributed forecast
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errors and relying on the analytical formulas for the variance of the demand

over the lead time. Again, these can be relaxed and modified to incorporate

other distributional assumptions or empirical estimates.

In this case study, given the available data, there was no need to compli-

cate the modelling process by considering alternative exponential smoothing

model forms. Nonetheless, the proposed optimisation makes the use of in-

formation criteria invalid and one has to revert to more generally applicable

strategies, such as using cross-validated routines. Future research should

explore whether the proposed approach can facilitate novel model selection

strategies, driven directly by the relevant decision being simulated. At this

point it is useful to note that as the model parameters are not optimised

based on how well the conditional mean of the forecast fits to the observed

demand, but rather on the resulting inventory performance, we do not need

to focus on the standard outputs of the forecasting model, but instead di-

rectly use the elements of the predictive distribution that are more convenient

for the implemented inventory policy.

Finally, here we consider the inventory decision to construct the appropri-

ate simulation based cost function. An attractive property of this modelling

question is that inventory decisions are high frequency, and therefore occur

multiple times within the in-sample period, thus providing adequate sensi-

tivity for the optimisation. However, with the proposed approach we can

exchange the inventory decision with other problems as needed. Therefore,

it provides a general framework for how to parametrise forecasts directly on
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the decisions, as long as an associated simulation can be constructed. Ex-

ploring further the generality of the approach for parametrising forecasts in

other decision making contexts will be valuable.
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